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Abstract: This thesis is devoted to the study (through Calculus
of Variations) of nonlocal models obtained from nonlinear Solid
Mechanics that remains valid for discontinuous deformations.
First, we address the suitability of bond-based peridynamics into
nonlinear Solid Mechanics. The fact that not many hyperelastic
functions can be recovered after the localization process leads
us to study models and functionals whose energy density de-
pends, in turn, on fractional (integral) gradients. This comes
with a proper study of functional spaces based on the fractional
gradient, fractional vector calculus and a recovering of the clas-
sical model when the fractional index s goes to 1. Finally, a third
framework similar to the fractional one but acting over bounded
domains is shown (relevant in applications). In this framework
more tools had to be developed, including a nonlocal version of
the fundamental theorem of Calculus. Finally, we manage to de-
termine the existence of minimizers of nonlocal vector polycon-
vex energy functionals under (nonlocal) Dirichlet conditions in a
functional space admiting functions exhibiting some singularity
phenomena.
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Summary

This thesis consists of three main parts devoted to the study of nonlocal
models obtained from nonlinear Solid Mechanics. The motion of a system is
often described by a set of integral or partial di�erential equations (PDE) so
it is interesting to know if there are actual solutions for it. This is sometimes
done (through Calculus of Variations) studying the existence of minimizers
of the associated energy functionals (Section 1.2). In the �rst part of this
thesis, we analyse the suitability of nonlinear bond-based peridynamics into
Solid Mechanics, for which some restrictions are already known such as the
fact that it requires the Poisson ratio to be ν = 1

4 . The energy functional in
this description can be written as a double integral on a pairwise potential
function. The existence of minimizers (and thus, optimal deformations) was
already shown in [23] as well as the localization process in order to recover
classical hyperelastic energy functions [25]. Nevertheless, when we followed
the study carried out in Part I, we discovered that not many hyperelastic
functions can be recovered after the localization process. In particular, in Part
I we recall such localization process depicted in [25] and follow it assuming
certain physical conditions such as isotropy and frame-indi�erence, which
are shown to remain after passing from the nonlocal density to the local
one. Then, we obtain a condition for a classical hyperelastic function to be
recovered from a (nonlocal) pair-wise potential function. This shows us that
even in this simpli�ed case, very few hyperelastic functions are recoverable.
In particular, Money-Rivlin models cannot be recovered after localizing bond-
based peridynamics. We also obtain the restriction of the Poisson ratio ν = 1

4 ,
but through a di�erent path. All this leads us to consider di�erent kinds of
nonlocal models, in particular those based on nonlocal operators such as the
fractional gradient, or a nonlocal version over bounded domains. This means
that instead of having a double integral as an energy functional, this would
consist of an integral in terms of a function W which depends, in turn, of
another integral operator. In other words, there would be a function between
the two integrals imposing some di�culties at the time of working with these
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fractional functionals or searching for bounds of the respective semi-norms.

Secondly, Part II is devoted to the study of (Bessel) fractional spaces,
(a natural type of fractional spaces as shown in [99]) based on the Riesz s-
fractional gradient, where the main goal is the study of vector fractional prob-
lems through Calculus of Variations. So as to do so, Part II is divided into
three chapters. The �rst one focuses on the introduction and study of frac-
tional (gradient) operators and their associated functional spaces according
to some previous results in the literature. We highlight in particular [99,100]
where several important results such as continuous and compact embedding
were already settled. However, a proper density result was not considered
therein, although on the other hand, [37] tackled such issue from a distri-
butional perspective. Such density issue is also addressed in this document
but through a di�erent approach. This chapter comes with some illustrative
formulas that might help to provide a better insight with respect to these
operators, showing in particular some analogous facts to the classical case,
as a fractional integration by parts, the Fourier transform of the fractional
gradient or its relationship with the, rather well-known, fractional laplacian.
Nevertheless, not all of those formulas enjoy such similarity with the local
case, as is the case of the fractional Leibniz rule, what will have some impli-
cations in the proof of the fractional Piola identity. This chapter ends with
the aforementioned embeddings (with an alternative proof of the compact em-
bedding) and two examples of functions in these fractional spaces exhibiting
some singularity phenomena. In particular, in this chapter we have collected
several results and continued developing the theory so that we had the tools
to prove in the following chapter the existence of solution (a minimizer) of
polyconvex vector fractional energy functionals under a complementary value
condition in these Bessel spaces. This is done following a similar path to that
of classical hyperelasticity [10]. In other words, assuming polyconvexity, it
is required to prove the weak continuity of the determinant of the fractional
gradient and then conclude using the direct method of Calculus of Variations.
A key ingredient in this process is the fractional Piola identity, since it al-
lows us to obtain a sort of integration by parts formula of the determinant.
This chapter is completed with the corresponding Euler-Lagrange equations.
Lastly, the third chapter is devoted to the study of the Γ-convergence (lo-
calization) when s goes to 1, for which some continuous inequalities in the
�rst chapter (of this part) had to be written with independence of the index
s. This, together with the convergence of the s-fractional gradients to the
local one, leads to the recovering of the classical energy model over the whole
space. A wider description is shown at the introduction of the chapters of
Part II. Nevertheless, besides the clear academic interest of this approach, it



may not be the most suitable one when one wants to deal with applications,
since it is required the information from the whole space Rn to compute the
fractional gradient as well as the respective energy functionals.

Finally, in Part III we consider a model which intends to �x the afore-
mentioned drawbacks of the previous two parts. To wit, we study a nonlocal
framework similar to that of Part II, i.e. based on a nonlocal gradient, similar
to the Riesz s-fractional one but de�ned over bounded domains, giving rise
to an energy functional whose energy density also depends on a fractional
operator, having again a "function" between the two integrals of the energy
functional. Given this structure, it seems that, as in the previous case, with
this approach we could also recover the hyperelastic functions after the lo-
calization process (without the requirement of being de�ned over the whole
space). All these facts would make this a proper model for nonlocal nonlinear
Solid Mechanics, and in particular, as was suggested in [81], this kind of oper-
ators would �t in the state-based description of peridynamics. We would like
to highlight the statement and proof of a nonlocal version of the fundamental
theorem of calculus (to wit, an integral formula with which a function can be
recovered from its nonlocal gradient), since it allows us to prove continuous
embeddings as well as a sort of nonlocal mean value theorem, which allow us,
in turn, to obtain a compact embedding result which were lacking in a nonlo-
cal vector framework based on gradient operators. In particular, this nonlocal
version of the fundamental theorem of calculus is rather involved and requires
the use of advanced techniques from Fourier analysis. Since the localization
process in this framework is not included in this manuscript, this last part
consists only of two chapters. The structure is quite similar to that of Part
II. The �rst chapter introduces the nonlocal operators and functional spaces
we are going to deal with, in this case with a nonlocal (volumetric) boundary.
We also show some formulas, results and embeddings in an analogous way to
Part II except for the proof of a nonlocal version of the fundamental theorem
of calculus, which required its own solo section. Then, as in the case with the
fractional gradient, in the second and last chapter we address the existence
of minimizers of nonlocal vector energy functionals under convexity as well
as polyconvexity, for which it is also required a nonlocal version of the Piola
identity. Accordingly, the Euler-Lagrange equations are also obtained.





Resumen

Esta tesis consta de tres partes diferenciadas, con el �n de estudiar modelos
no locales obtenidos a partir de la Mecánica de Sólidos no lineal. El compor-
tamiento de un sistema es a menudo descrito por un conjunto de ecuaciones
en derivadas parciales (EDPs) o ecuaciones integrales, por lo que es intere-
sante ver si realmente hay alguna solución al sistema para describir dicho
comportamiento. Ésto es algo que en algunos casos se hace (a través del Cál-
culo de Variaciones) estudiando la existencia de minimizadores del funcional
energía asociado (Sección 1.2). En la primera parte de la tesis analizamos la
idoneidad de la descripción bond-based de la peridinámica en la mecánica de
sólidos, para la cual ya se conocía alguna restricción, como el hecho de que
impone que el ratio de Poisson sea ν = 1

4 . El funcional energía acorde con
esta formulación viene dado por una doble integral de una función densidad
sobre cada par de puntos. La existencia de minimizadores (y por tanto, de
deformaciones óptimas) ya fue probada en [23] así como el proceso de lo-
calización para recuperar funciones clásicas de hiperelasticidad cuando la no
localidad desaparece [25]. Sin embargo, al desarrollar el estudio mostrado en
la Parte I, observamos que no muchas funciones hiperelásticas se pueden re-
cuperar después del proceso de localización. En particular, se recuerda dicho
proceso de localización mostrado en [25] y éste es reproducido para el caso
más sencillo en el que se asumen ciertas condiciones físicas naturales como son
la isotropía y la invariancia con respecto al observador. También se muestra
que dichas propiedades se siguen cumpliendo al pasar de la densidad no local
a la local. A continuación, se obtiene una condición para caracterizar las fun-
ciones clásicas de hiperelasticidad que pueden ser recuperadas a partir de una
función de densidad evaluada sobre cada par de puntos. Ésto nos muestra
que incluso en este caso más sencillo, hay muy pocas funciones hiperelásticas
que pueden ser recuperadas. Adicionalmente, también se obtiene en este doc-
umento la restricción sobre el ratio de Poisson ν = 1

4 , pero por medio de un
camino diferente. Todo ésto nos lleva a considerar otros tipos diferentes de
modelos no locales, en particular, a aquellos que están basados directamente
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en operadores no locales como el gradiente fraccionario, o una versión suya
no local que opere sobre dominios acotados. Ésto implica que en vez de tener
una doble integral como funcional de energía, ésta consistiría de una integral
sobre una función W , que depende, a su vez, de otro operador integral. En
otras palabras, habría una función entre las dos integrales, lo cual impondría
algunas di�cultades a la hora de trabajar con estos funcionales fraccionarios
o en la búsqueda de cotas adecuadas de las respectivas semi-normas.

La Parte II de la memoria está dedicada al estudio de los espacios frac-
cionarios (de Bessel), (una especie natural de espacios fraccionarios como se
mostró en [99]) basados en el gradiente fraccionario s de Riesz, donde el prin-
cipal objetivo es el estudio de problemas vectoriales fraccionarios a través
del Cálculo de Variaciones. Para ello, la Parte II se divide en tres capítu-
los. El primero de ellos se centra en la introducción y estudio de operadores
(gradiente) fraccionarios y sus espacios funcionales asociados de acuerdo con
algunos resultados previos en la literatura. Resaltamos en concreto [99, 100],
donde varios resultados importantes como son las inmersiones compactas y
continuas ya fueron establecidos. Sin embargo, en dichos artículos no se
consideró un resultado de densidad en sí, aunque por otra parte, en [37]
abordaron dicho tema desde una perspectiva distribucional. Dicho asunto
de la densidad también se ha abordado en este documento, pero por medio
de un enfoque diferente. Este capítulo incluye algunas fórmulas ilustrativas
que pueden ayudar a proporcionar una mejor percepción de estos operadores,
como por ejemplo, mostrando algunos hechos análogos a los que se dan en
el caso clásico, como son una integración por partes fraccionaria, la transfor-
mada de Fourier del gradiente fraccionario o la fórmula que lo relaciona con
el más conocido laplaciano fraccionario. Sin embargo, no todas esas fórmulas
consiguen tal similaridad con el caso local, como es el caso de la derivada
fraccionaria del producto, lo cuál tendrá sus implicaciones en la prueba de
la identidad de Piola fraccionaria. Este capítulo acaba con las previamente
mencionadas inmersiones (incluyendo una prueba alternativa de la inmersión
compacta) y dos ejemplos de funciones en estos espacios fraccionarios que
representan singularidades, como las fracturas o cavitaciones. En particular,
en este capítulo se han recogido varios resultados y se ha continuado desar-
rollando la teoría de forma que se tengan las herramientas necesarias para
probar en el siguiente capítulo la existencia de solución (de minimizadores),
en estos espacios de Bessel, de funcionales de energía vectoriales, fraccionar-
ios y policonvexos bajo una condición en el complementario del dominio (que
sustituye a la condición de frontera). Ésto se ha llevado a cabo siguiendo un
camino similar al tomado en el caso de la hiperelasticidad clásica [10]. En
otras palabras, asumiendo la condición de policonvexidad, los pasos son pro-



bar la continuidad débil del determinante del gradiente fraccionario y luego
concluir usando el método directo del Cálculo de Variaciones. Un ingrediente
clave en todo este proceso es la identidad de Piola fraccionaria, dado que
ésta nos permite obtener una especie de fórmula de integración por partes del
determinante. Para completar este capítulo se incluyen las correspondientes
ecuaciones de Euler-Lagrange. Por último, el tercer capítulo de esta parte
está dedicado al estudio de la Γ-convergencia (localización) cuando s tiende a
1, para el cuál algunas desigualdades en el primer capítulo de esta parte han
tenido que ser escritas con una constante independiente de s. Ésto, junto con
el hecho de que el gradiente fraccionario converge al gradiente clásico cuando
s tiende a 1, nos lleva a recuperar el modelo clásico (de�nido sobre todo el
espacio). Sin embargo, a pesar del claro interés académico de este enfoque,
puede que no sea el más adecuado cuando uno quiere lidiar con aplicaciones,
dado que se requiere la información sobre todo el espacio Rn para obtener el
gradiente fraccionario así como los respectivos funcionales de energía.

Finalmente, en la Parte III consideramos un modelo que busca suplir los
mencionados inconvenientes de las dos Partes anteriores. Es decir, se estudia
un marco no local similar al de la Parte II, que está basado en un gradiente
no local similar al gradiente fraccionario, pero de�nido sobre dominios aco-
tados de forma que llegamos a tratar de nuevo con funcionales de energía
de�nidos como una integral cuya función densidad de energía también de-
pende a su vez de otra integral, teniendo de nuevo una función entre dos
integrales del funcional energía. Dada esta estructura, parece que, como en
el caso anterior, con este enfoque se podrían recuperar también las funciones
hiperelásticas después del proceso de localización (sin necesidad de que estén
de�nidas sobre todo el espacio). Todas estas observaciones harían de éste
un modelo adecuado para la Mecánica de Sólidos no lineal, no local, y en
particular, como se comenta en [81], este tipo de operadores encajaría en la
descripción state-based de la peridinámica. En esta parte, destaca sobre lo
demás, como mayor novedad en su análisis, el enunciado y prueba de una
versión no local del teorema fundamental del cálculo (es decir, una fórmula
integral con la que recuperamos una función a partir de su gradiente no local),
dado que éste nos permite probar inmersiones continuas así como una especie
de teorema del valor medio no local, que nos permiten, a su vez, probar un
resultado de inmersión compacta que faltaba en un marco no local vectorial
basado en operadores gradiente. En concreto, la prueba de esta versión no
local del teorema fundamental del cálculo involucra complejidad y requiere
el uso de técnicas avanzadas de análisis de Fourier. Dado que el proceso de
localización en este contexto no está incluido en esta memoria, esta última
parte consta sólo de dos capítulos. La estructura es bastante similar a la de



la Parte II. En el primer capítulo se introducen los operadores no locales y
espacios funcionales con los que vamos a tratar, que en este caso conlleva
lidiar también con una frontera no local (volumétrica). También se mues-
tran algunas fórmulas, resultados e inclusiones de forma análoga a la Parte
II excepto por la prueba de la mencionada versión no local del teorema fun-
damental del cálculo, el cuál requiere una sección propia. Luego, como en el
caso del gradiente fraccionario, en el segundo y último capítulo abordamos la
existencia de minimizadores de funcionales de energía vectoriales no locales
bajo condiciones de convexidad, así como de, la más general, policonvexidad.
De manera acorde también se obtienen las ecuaciones de Euler-Lagrange para
este caso.
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Chapter 1.

Introduction

Modelling nature has always been a point of interest for physicists, mathe-
maticians and other scientists, who found in mathematics a relevant language
and useful tools so as to describe such di�erent processes. One of the most
notable ways to do so is by means of (partial) di�erential equations which
frequently appear in mathematics, physics, engineering and biology. These
equations have become quite popular in approximating or describing di�er-
ent phenomena in several �elds. However, they have a strong dependence on
the classical gradient operator (derivative) which gives them their local na-
ture, usually imposes some regularity and prevents them from catching some
nonlocal information. In the last decades, nonlocal problems are gathering
more attention and being considered as alternative or supplementary models
to local ones, since they can catch some information that the previous ones
cannot, such as long range interactions. Speci�cally, they may require less
regularity of the functions, allowing for more general admissible solutions. In
fact, typical characteristics of nonlocal problems include being able to pro-
vide an e�ective modelling for discontinuities or singularities and computing
interactions through integration instead of di�erentiation (which gives rise to
integral or integro-di�erential equations), which is related to the fact that
points separated by a �nite distance exert a force upon each other. This has
led to the development of several studies considering their applications to
various �elds such as continuum mechanics [51, 52, 103, 107], image process-
ing [9,34,42,64], nonlocal di�usion [3,35,114] or machine learning [4,87]. See
also [47] for an introduction to nonlocal modelling. This interest in nonlocal
problems has been accompanied by a budding but signi�cant progress on its
mathematical development.

A feature that frequently appears in several models, is the fact that the
range of nonlocal interactions is determined by a positive value, which is gen-
erally given by the radius of an Euclidean ball as in the case of peridynamics
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theory, (where interactions between particles is assumed to be negligible when
they are further away than a certain distance), which is one of the main mo-
tivations of this work. Peridynamics is a nonlocal alternative model in Solid
Mechanics introduced by S.A. Silling in [103] (bond-based peridynamics), who
later added the more general state-based description of peridynamics [107].
Peridynamics theory was proposed in order to overcome some modelling as-
pects since, although classical elasticity models (whose use is rather spread
among the scienti�c and engineering communities) have proved to be quite
practical in certain situations, they still fail when singularity phenomena such
as fracture or cavitation appears. As with other nonlocal problems, the de-
velopment of this theory in the last years, though recent, has been impressive.
Some references on this are [72,75,104,107] and the two books [62,77].

All these advantages in modelling that nonlocal models o�er may come
at a cost. Concretely, this usually means that we have to deal with some
complex (integral) terms, which pose some technical di�culties in the math-
ematical analysis and requires working with more general functional spaces.
Another relevant aspect is that of boundary conditions which require a bet-
ter understanding since they could be taken as of volumetric type given their
nonlocal nature. Although a signi�cant part of the development of nonlocal
problems has been driven by a practical and applied interest, one of the most
noticeable disadvantages of this problem comes at the time of numerical sim-
ulations since they often impose an increased computational cost, given the
introduction of more complex, integral operators in the model. There have
been several works dealing with this issue [43,45,60].

Delving a little bit into the structure of nonlocal models, it is usual to see
them obtained by means of the integration against a nonlocal kernel which
sometimes can de�ne a nonlocal gradient operator,

�
u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy.

A particular case is that of fractional calculus, where thanks to a particu-
lar kernel the notion of derivative is extended to non-integer di�erentiability
indexes s ∈ (0, 1) which gives rise to spaces of functions that may admit dis-
continuities. In one dimension there are a lot of di�erent notions, where the
Lioville and Caputo's derivative stand out . On the other hand, in several
dimensions the so-called fractional laplacian has captured and enjoyed most
of the attention and development in this framework whereas the Riesz frac-
tional gradient, which is related to the former in a completely analogous way
to their local counterparts, is starting to take o�. Actually, [102] showed that
the Riesz fractional gradient enjoys several characteristics such as uniqueness
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up to a multiplicative constant under natural requirements, making it the
natural de�nition for a fractional di�erential object.

We believe that the results showed in this work would be of help so as to
obtain a better understanding of the nature underlying these models as well
as part of the mathematical structure and provide tools that may make the
handling of nonlocal models more treatable.

Hence, the goal of this work is to obtain and study a nonlocal model
of hyperelasticity (fully nonlinear) so that it remains valid for discontinuous
deformations. So as to do so we �rst study the suitability of bond-based
peridynamics when we are dealing with nonlinear problems in Solid Mechan-
ics. Then we study and continue developing the mathematical foundation of
fractional and nonlocal vector calculus that will allow us to cast the sought
energy functionals as well as the existence of minimizer under polyconvexity.

Given the subjects of Solid Mechanics and Calculus of Variations to which
this work belongs, we provide an introduction to nonlinear elasticity, vector
variational problems as well as peridynamics, talking about the two mentioned
descriptions, bond-based and stated-based ones.

1.1 Nonlinear elasticity

Classical elasticity theory is the branch of Solid Mechanics that deals with de-
formations that are reversible, i.e. when a material recovers its original shape
after being deformed by an external load. In particular, nonlinear elasticity
deals with deformations that can be either large or small, so there could be a
signi�cant di�erence between the deformed con�guration of a material and its
original one (reference con�guration). It is usually denoted by u(x, t) ∈ R3

the position occupied by the material at the point x in a domain Ω and at
the time t. Hence, u is the function that takes the reference con�guration to
the deformed con�guration u(Ω, t).

Ω u(Ω, t)

u(x, t)

u(x, t)

Further, the deformation u must ful�l the physical requirements of preser-
vation of the orientation and non-interpenetration of matter. The former
translates mathematically into the requirement of u being injective, while the
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latter into the condition detDu(x) > 0 a.e. x ∈ Ω, where Du is the deforma-
tion gradient, which is itself a measure of strain. As it is usual, the equations
of motion are obtained after imposing Newton's second law, i.e.

ρRü = div T (x) + F (x),

where ρRü stands for the density times the acceleration, the term F represents
the external body force, while div T (x) stands for the interactions of inner
particles and T (x) is the Piola-Kirchho� stress tensor, which is related to the
Cauchy stress tensor T through the identity

T (x) = detDu(x)T (u(x))Du(x)−T = T (u(x)) cof(Du(x))T ,

where cof A refers to the cofactor matrix of A. This hyperbolic system was
shown to have existence by T.J.R. Hughes, T.Kato and J.E. Marsden but
under not totally realistic assumptions [70].

Focusing on the stationary model, classical theory of Solid Mechanics
establishes that the deformation produced on the body by external loads
must verify the following conditions written in the reference con�guration{

−div(T (x)) = F (x), x ∈ Ω,
T (x) · n = g(x), x ∈ Γ1,

where Γ1 is the subset of the boundary ∂Ω where the surface force g is applied,
and n is the outer normal to Γ1.

So as to obtain the constitutive equation, a material is mathematically
de�ned as elastic if the Cauchy stress tensor T (y) in each point of a deformed
con�guration y ∈ u(Ω) is a function exclusively of x = u−1(y) and the de-
formation gradient Du(x). In this case, the Piola-Kirchho� stress tensor is
now

T (x) = T (x,Du(x)).

Assuming that a Dirichlet boundary condition u0 is imposed on Γ0 = ∂Ω\Γ1,
the deformation u must satisfy the following boundary value problem

−div(T (x,Du(x))) = F (x), x ∈ Ω,
T (x,Du(x)) · n = g(x), x ∈ Γ1,
u = u0, x ∈ Γ0.

We assume here that (as is common in a majority of the interesting applica-
tions) body and boundary forces, respectively F and g, do not depend on the
deformation u.

The existence of solution of this stationary problem (besides some con-
temporary results by T.Valent in [113]) with realistic assumption was solved
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by John Ball applying Calculus of Variations [10]. An important concept in
such process is hyperelasticity. An elastic material is called hyperelastic if
there exists a function W : Ω × Rm×n → R, called stored-energy function of
the material, such that the Piola-Kirchho� stress tensor is the derivative of
W with respect to its second variable.

T (x,A) =
∂W

∂A
(x,A), x ∈ Ω, A ∈ Rm×n.

In this case, the potential elastic energy of the deformation u is

E(u) =

�
Ω
W (x,Du(x)) dx−

�
Ω
F (x) · u(x) dx−

�
Γ1

g(x) · u(x) dHn−1(x),

where F : Ω → Rm is the distributed body load and g : Γ1 ⊂ ∂Ω → Rm
the boundary load. The term dHn−1 indicates the Lebesgue (n − 1)-surface
integral. Moreover, critical points of the energy are equilibrium solutions of
Cauchy equations of motion.

For consistency from the physical point of view, it is natural to impose
some conditions as the frame indi�erence. Thus, it is considered that the
stored-energy density must satisfy the frame indi�erence condition

W (x,RA) = W (x,A) (1.1)

for all points x ∈ Ω, all matrices A ∈ Rm×n and all rotations R ∈ SO(m) =
{Q ∈ Rm×m : detQ = 1, QQT = Im} (Im the identity matrix of order m).
This re�ects the fact that the deformation energy does not depend on the
observer.

Another physical property that we are going to consider throughout this
document is concerned about symmetry of the stored energy density func-
tion. In particular, we introduce the de�nition for isotropic materials. A
hyperelastic material is called isotropic if

W (x,AR) = W (x,A), (1.2)

for all points x ∈ Ω, all matrices A ∈ Rm×n and all rotations R ∈ SO(n).
This means that the elastic energy is independent of the stretching, or loading,
direction. When n = m = 3, Rivlin-Ericksen representation theorem (see [36,
Theorem 4.3-1]) establishes that the hyperelastic body is isotropic if and only
if, at each point, the stored-energy function depends only on |A|2, | cof A|2
and detA; in other words, if and only if there exists ϕ : Ω× R× R× R→ R
such that

W (x,A) = ϕ(x, |A|2, | cof A|2, detA).
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A paradigmatic example of isotropic hyperelastic materials are Mooney-
Rivlin materials, whose stored-energy density is given by the expression

W (A) = α|A|2 + β| cof A|2 + g(detA), (1.3)

with α, β > 0 and g a given function. When β = 0, we recover the Neo-
Hookean materials. Although the hyperlasticity assumption might be seen
like another restriction, it seems that most materials can be modelled as
hyperelastic ones: it was shown in [68, Section 28] that a necessary and
su�cient condition for an elastic material to be hyperelastic is for "the work
to be nonnegative in closed processes", and according to the beginning of
[68, Section 28], nonnegative work in closed processes is a requirement of
thermodynamics. Actually, recent works show some modelling of biological
tissues, like [61] with an accurate model of the heart, or are even used in the
�lm industry in order to make their animations more realistic [108].

An essential reference on the mathematical theory of nonlinear elasticity
is [36]. Other references are the books [5, 39, 78, 89] and the survey papers
[12,14].

1.2 Vector variational problems

1.2.1 Introduction and historical perspective

Previously to the proper theory of Calculus of Variations some problems ap-
peared describing a law in mathematics or nature by minimizing a certain
magnitude, i.e. minimization principles. That is the case of the law of re�ec-
tion (specular re�ection) stated by Hero of Alexandria, who said that among
every possible path between two points, the light take the shortest one. A
more general principle than that of re�ection was given by Fermat in order to
include the refraction process through di�erent media into the problem and
using variational techniques. The principle says that a ray of light between
two given points follows the path that minimizes time. Another problem
whose statement dates from antiquity is the isoperimetric inequality. It can
be posed as an optimization problem: either �nding the curve of �xed length
enclosing the maximal area, or the one with minimal length given a �xed area.
This problem was later reformulated within Calculus of Variations terminol-
ogy. Other problems arose such as �nding the minimal path throughout not
necessarily �at surfaces or the search of minimal surfaces with some constrains
on their surface measure or boundary (Plateau's problem). This phenomena
can be observed in the shapes adopted by soap �lms. A special mentions
goes for the brachistochrone curve problem (i.e. �nding the curve taken by a
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descending ball between two points that minimizes time), a hallmark in the
history of Calculus of Variations which was proposed as a challenge among
the Bernoulli brothers, L'Hôpital, Leibniz and Newton. A introductory text
to Calculus of Variations with a historical perspective can be found in [112].
Another introductory book to Optimization and Calculus of Variations can
be found in [90].

In general, there are many problems in nature where the system tends
to have a state of minimal energy. This is re�ected in the Principle of least
action (or stationary action). It says that given the generalized coordinates
q(t) that show the evolution of the system, the Lagrangian L[q(t), q̇(t), t] and
the action de�ned as

S[q(t)] =

� t2

t1

L[q(t), q̇(t), t] dt

for times t1 < t2, then the trajectory (solutions of the equations of motion)
between times t1 and t2 (and images q1 = q(t1) and q2 = q(t2)) is a critical
point of S[q(t)] (i.e. zeros of the derivative).

Some years later, Euler and Lagrange showed that the minimizers of a
given functional

F (y) =

� x2

x1

f(x, y(x), y′(x)) dx

can be found among the solutions of the corresponding Euler-Lagrange equa-
tions.

∂f

∂y
(x, y(x), y′(x))− d

dx

∂f

∂y′
(x, y(x), y′(x)) = 0.

Equivalently, under certain conditions, the existence of solution of a system of
equations of motion can be determined by proving the existence of a minimizer
of their energy functional. This assertions can also be obtained in a framework
of several variables as it is the case of hyperelasticity theory mentioned in the
previous section.

1.2.2 Calculus of Variations

The Calculus of Variations is a branch of mathematical analysis that focuses
on studying extremals and critical points of functionals that may depend on
one or several functions (and their derivatives), which might be abided to
several constrains of di�erent nature. For relevant references on the Calculus
of Variations see [8, 39, 65, 78, 89, 95]. This theory also provides an approach
to determine the existence of solutions of certain sets of equations under
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some conditions. Concretely, for I(u) an integral functional, we consider the
problem

min{I(u) ; u ∈ V }.
An important tool in this framework is the direct method of Calcu-

lus of Variations. It is a way of determining the existence of solution (a
minimizer) of a variational problem provided the following two ingredients.

1. Coercivity: lim‖u‖→∞ I(u) = +∞

2. Sequential lower semi-continuity: For every uj ⇀ u (weakly), we
have that

I(u) ≤ lim inf
j→∞

I(uj)

with u : Rn → Rm. The �rst ingredient is that the functional must be coer-
cive, in the sense that I(u) blows up as the norm of u increases (a compactness
property). For the second ingredient, I must be lower semi-continuous; in our
case, weak lower semicontinuous, since the relevant topology in this situation
is the weak topology in a Sobolev space. Coercivity is usually guaranteed by
imposing proper lower bounds on the stored-energy density, i.e. the integrand
function. More delicate is the weak lower semicontinuity, which, for integral
functionals like I, is typically characterized in terms of convexity notions for
the integrand. In the scalar case (n = 1 or m = 1), the standard de�nition
of convexity guarantees the weak lower semicontinuity [39].

In the pioneering work [10], an existence theory in hyperelasticity was
given by means of the application of the direct method of the Calculus of
Variations to the energy functional

I(u) =

�
Ω
W (x,Du(x)) dx. (1.4)

In Solid Mechanics we are usually concerned about vectorial problems (n,m >
1). In this case several options weaker than convexity appear which may also
provide the weak lower semicontinuity of the functional. In this situation,
the relevant convexity concept is quasiconvexity (see [39] and the references
therein). We say that a function ψ : Rm×n → R is quasiconvex if and only if

ψ(A) ≤
�

(0,1)n
ψ(A+Dv(x)) dx, (1.5)

for all matrices A ∈ Rm×n and test functions v ∈ C∞c ((0, 1)n,Rm). It turns
out that under the standard coercivity and growth conditions,

1

C
|A|p − C ≤W (x,A) ≤ C(1 + |A|p), a.e. x ∈ Ω, A ∈ Rm×n,
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for some 1 < p <∞ and C > 0, and assuming that W (x, ·) is quasiconvex for
a.e. x ∈ Ω, the existence of minimizers for I holds. In hyperelasticity, quasi-
convexity of isotropic hyperelastic stored-energy densities is a consequence of
its polyconvexity. When n = m = 3, we say that W is polyconvex if it can
be expressed as

W (x,A) = ϕ(x,A, cof A,detA)

for some ϕ such that ϕ(x, ·, ·, ·) is convex for a.e. x ∈ Ω (see [39] for the
de�nition of polyconvexity for general dimensions). For a general de�nition
see Part II Section 4.3. Polyconvexity implies quasiconvexity under proper
coercivity and growth conditions [10, 39], and, therefore, it is the right con-
vexity notion in this context. When dealing with polyconvex densities, upper
bounds can be left behind and existence of minimizers is obtained just by
imposing the coercivity conditions

1

C
(|A|p1+| cof A|p2+| detA|p3)−C ≤W (x,A), a.e. x ∈ Ω, all A ∈ Rm×n,

for suitable exponents pi ≥ 1, i ∈ {1, 2, 3}. This is in agreement with some
physical requirements such as the fact that it is needed an in�nite amount of
energy to reduce something of �nite volume to zero volume,

W (A)→∞ when detA→ 0,

which would be incompatible with the upper bound conditions (required by
the quasiconvexity assumption).

The proof of the weak lower semicontinuity of the hyperelastic energy
functional assuming polyconvexity goes through the Piola Identity

div cof Du = 0,

a key ingredient in such process.
Well-known references on the application of Calculus of Variations tech-

niques to nonlinear elasticity are again [5, 36,39,78,89].

1.2.3 Γ-convergence

Sometimes we may �nd ourselves with a family of functionals depending on
a parameter, for example, from an approximation argument or fractional or
nonlocal framework. As it is common in mathematical analysis, one would
like to see if some asymptotic behaviour can be obtained after a limit pro-
cess applied to functionals. Since we are dealing with variational problems, it

27



Chapter 1. Introduction

would be desirable that the chosen convergence notion satis�es some proper-
ties, such as minimizers converging to minimizers. Γ-convergence is designed
in such a way that it tries to ful�l that, and other properties, making it
the proper notion for the convergence of functionals. For a more detailed
explanation see [29,30,40].

De�nition 1.2.1. Let X be a metric space and Fj , F : X → R be a family of
functionals, j ∈ N. We say that Fj Γ-converges to F as j →∞ in the strong
topology of X if the following two conditions hold:

� Liminf inequality: For every family {uj}j∈N in X such that uj → u in
X as j →∞, we have

F (u) ≤ lim inf
j→∞

Fj(uj).

� Limsup inequality: For each u ∈ X, there exists a family {uj}j∈N ⊂ X
such that uj → u in X as j →∞ and

lim sup
j→∞

Fj(uj) ≤ F (u).

Although not in the de�nition of Γ-convergence a condition zero is required
in order to ensure the e�ectiveness of the Γ-convergence. i.e. a compactness
property that ensure the existence of converging sequences.

The Γ-convergence can be seen as a generalization of the direct method
of the Calculus of Variations, from which has inherit the lim inf inequality,
which together with the extra compactness requirement, play its role in the
existence of minimizers. Then the lim sup inequality ensures that the Γ-limit
is reached.

A summary of its properties includes the following. It ensures the ex-
istence of solution of the problem min{F (u) ; u ∈ X}. Then, we have the
convergence of minimum values of Fj to a minimum value of F , accompanied
by the already mentioned fact of minimizers converging to minimizers. Other
properties include being stable under continuous perturbations and that the
Γ limit functional is lower semi-continuous.

1.3 Peridynamics

Peridynamics is a new model of Solid Mechanics proposed by S. Silling in [103]
whose goal is to bind together di�erent phenomena in a single framework.
Among its motivations we �nd the fact that classical elasticity models (stated
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in terms of di�erential equations and energy functionals), despite having been
showed to be quite practical in many situations, stop being valid when singu-
larities appear such as fracture or cavitation (the sudden formation of voids in
a material). In order to overcome this, the use of gradients is avoided by com-
puting internal forces by integration instead of di�erentiation, giving rise to
nonlocality as the main di�erence with classical elasticity [36]. In other words,
points separated by a positive distance exert a force upon each other. As a
result, the underlying model is a suitable framework where discontinuities
may appear naturally, such as fracture, dislocation, or in general, multiscale
materials. This would also allow the study of cracks without doing so in a
separated way, as is usually done through crack mechanics. In this approach
it is also considered that the interaction of points further away than a posi-
tive distance δ, called horizon, is negligible. Since the pioneering paper [103],
the development of peridynamics has been really overwhelming, both from a
theoretical and a numerical-practical point of view. Some references on this
are [72, 75,104,107] and the two books [62,77].

Actually, two descriptions of peridynamics were given. The �rst of them
was depicted in [103] and was called bond-based peridynamics. Such approach
came with some drawbacks as the fact that it forces the Poisson ratio to be
ν = 1

4 . So as to obtain a more general model, the so-called stated based
description was proposed in [105] later on.

1.3.1 Bond-based peridynamics

The original model proposed in [103] was the so-called bond-based model, in
which the elastic energy is given by a double integral depending on pairs of
points in the reference and deformed con�gurations. There exists a pair-wise
potential function w : R3 → R3 such that the energy functional is given by

EBbP =

�
Ω

�
Ω∩B(x,δ)

w(x− x′, u(x)− u(x′)) dx′ dx,

for Ω ⊂ R3 compact, being the reference con�guration of a closed, bounded
body with reference mass density ρ : R3 → R. This is the term that would
represent the energy corresponding to the interaction of the internal forces as
opposed to the local version of classical elasticity. Adding the external forces
would equal the mass time the acceleration by Newton second law.

We follow the steps in [107] so as to obtain the equations of motion. In this
approach, internal forces are modelled through pairs of interactions between
points. It is also considered that the interaction of points further away than
a positive distance called horizon, δ, is negligible.
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Let y : Ω × R+
0 → R3 be a motion of Ω, so that y(x, t) is the position at

time t ≥ 0 of a material point x ∈ Ω. Let also Ωt = y(Ω, t) be the deformed
image of Ω at time t. Then, the velocity �eld is de�ned as

v(x, t) = ẏ(x, t) for every x ∈ Ω, t ≥ 0.

The main characteristic of bond-based peridynamics is that the term corre-
sponding to the interaction forces is obtained by means of "bonds" between
particles. Let L : Ω × R+

0 → R3 be the force per unit volume at time t on
x due to interactions with other particles in the body. Consequently, if the
external body force density �eld is given by b : Ω×R+

0 → R3, the total force
vector on a subregion P ⊂ Ω is given by

�
P

(L+ b)dx.

Additionally, by Newton third law, this L must be self-equilibrated, i.e.:
�

Ω
L(x, t)dx = 0

As nonlocality is the hallmark of the model, instead of using the deformation
gradient, as it was aforementioned, (nonlocal) internal interactions are com-
puted through integration of a dual force density f : Ω×Ω×R+

0 → R3, whose
dimensions are force per unit volume squared. We recall that the dependence
on y(x) of the force density functions in [107] is implicit.

L(x, t) =

�
Ω
f(x′, x, t)dx′; f(x, x′, t) = −f(x′, x, t).

There also exists a function τ : Ω×Ω×R+
0 → R3, called bond force density,

such that f(x′, x, t) = τ(x′, x, t)− τ(x′, x, t). Both of them have units of force
per unit volume squared.

Hence, now we can write the equations of motion imposing Newton second
law

ρ(x)ÿ(x, t) =

�
Ω
τ(x′, x, t)− τ(x, x′, t)dx′ + b(x, t). (1.6)

1.3.2 State-based peridynamics

The initial description of the model su�ers from some drawbacks, as previ-
ously mentioned, as for example, it forces the Poisson ratio to be ν = 1

4 . In
order to overcome this, S.A. Silling proposed later a reformulation of peri-
dynamics theory called state-based peridynamics. The idea is that with this
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approach internal forces are not only determined by each pair of bonds, but
by all the information of the bonds within each neighbourhood of radius δ.
The following is a short introduction of what appears in [107].

We start following the notation used by Silling to describe peridynamic
states [107] and then try to adapt it to a notation more consistent with the
one used throughout the rest of the document. Firstly, the deformation state
is introduced, which apply bonds associated to x, to their deformed images:

Y [x, t] : H → R3 (vector state)

Y [x, t]〈x′ − x〉 = y(x′, t)− y(x, t) x, x′ ∈ Ω,

where H is a neighbourhood of x. Secondly, the force state

T [x, t] : H → R3 (vector state)

T [x, t]〈x′ − x〉 = τ(x′, x, t) x, x′ ∈ Ω.

Next, we study the constitutive equation, which provides us τ(x′, x, t) ac-
cording to the deformation. The constitutive equation (for a simple and
homogeneous material) determines the force state, whose argument is the
deformation state.

T [x, t] = T̂ (Y [x, t])

Written in a more systematic notation, (which is the one we are going to use)
what we have is the following

τ(x′, x, t) = T [x, t]〈x′ − x〉 = T̂ (Y [x, t])〈x′ − x〉
= τ̂(y(x′, t)− y(x, t), x′, x)

In this state-based framework, the equations of motion are

ρ(x)ÿ(x, t) =

�
Ω

(
T [x, t]〈x′ − x〉 − T [x′, t]〈x− x′〉

)
dx′ + b(x, t).

Elastic peridynamic materials

The analogous model to the hiperelastic one studied in the nonlinear elasticity
classic theory is the one considered by Silling as elastic peridynamic material.

Such materials ful�l that there exists a function W = Ŵ (Y ); Ŵ : V → R
called strain energy density. (As it is indicated in [107], V denotes the set
of all vector states). This energy depends only on Y , and do not on Ẏ , or
θ (absolute temperature). Furthermore, for the ball B = B(x, r), it veri�es
that

Ẇ = T • Ẏ :=

�
B
τ(v − v′)dx′.
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So, we can see that

T̂ = ŴY ⇒ T̂ = ∇yŴ .

Therefore, the stationary equation yields

0 =

�
B
∇yŴ (Y [x])〈x′ − x〉 − ∇yŴ (Y [x′])〈x− x′〉dx′ + b(x). (1.7)

Since within the state-based approach each internal force at a point x depends
on the collective deformation of all the bonds connected to x in a ball of radius
δ, it would be natural to consider the dependence of Ŵ on Y [x] through
an integral collecting all the information in a neighbourhood of radius δ of
the deformation state Y [x, t]〈x′ − x〉 = y(x′, t) − y(x, t) times a kernel with
compact support inB(0, δ) providing information about the mentioned bonds,
namely �

B(x,δ)

y(x)− y(x′)

|x− x′|
x− x′

|x− x′|
ρ(x− x′) dx′. (1.8)

Moreover, with this consideration in mind, (1.7) would remind us of the term
divs∇yW (u,Dsu) or divsδ∇yW (u,Ds

δu) appearing in the Euler-Lagrange equa-
tions obtained in Part II and Part III.

Actually, in [81] it was already mentioned that models based on operators
like (1.8) would �t in state based peridynamics.
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The nonlinear bond-based peridynamics

model
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Chapter 2.

Bond-based peridynamics fails

to recover hyperelasticity

In this chapter, we are concerned with the bond-based model in the general
nonlinear situation, and more concretely with its relationship with classical
theory of hyperelasticity. A nonlinear model in bond-based peridynamics is
determined by a function w, named as pairwise potential function, such that
the total energy of any deformation u : Ω → Rm of the deformable solid
Ω ⊂ Rn is given by

�
Ω

�
Ω∩B(x,δ)

w(x− x′, u(x)− u(x′)) dx′ dx, (2.1)

where δ > 0 is the horizon, the model parameter which measures the maxi-
mum interaction distance between the particles. Physically, n = m = 3, but
it is of mathematical interest to do the analysis for any n and m, and so it
will be done in this chapter. In the isotropic linear elastic case, for which
the pairwise potential function is quadratic in its second variable, this model
limits the Poisson ratio of homogeneous deformations to be 1

4 , as it is ex-
plained in Section 1.3. This shows that the bond-based model su�ers from
severe restrictions in order to represent a wide variety of elastic materials.
The state-based model was proposed as a more general nonlocal peridynamic
model that avoids this serious limitation (see subsection 1.3.2). Although the
bond-based model presents that restriction, it has been very popular in the
last years and has shown to be appropriate and e�ective in modelling sin-
gularity phenomena in situations of practical and academic interest (see the
recent survey [72] and the references therein).

In [103], the link between the peridynamic bond-based model and conven-
tional ones was established in terms of the Piola-Kirchho� stress tensor. In
particular, for a given pairwise potential function, there exists a stored-energy
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density function whose local Piola-Kirchho� stress tensor coincides with the
nonlocal stress tensor (which also measures force per unit area in the refer-
ence con�guration). In that work, it is also argued that even though there
is a stored-energy density verifying such a condition for a given pairwise po-
tential, the reciprocal is not true, i.e., not for every hyperelastic density one
can �nd a pairwise potential function with the same Piola-Kirchho� tensor.
We o�er here a di�erent perspective which relies on the energy rather than
on the stress. First, we recall that Γ-convergence is the proper concept so as
to consider the convergence of variational problems (subsection 1.2.3), and
in particular, to tackle the problem of whether the limit of the nonlinear
bond-based model (2.1) when δ → 0 is a local hyperelastic energy like

�
Ω
W (Du(x)) dx. (2.2)

Such question was addressed in [25] in a general setting, showing that the
Γ-limit is a vector variational problem, and obtaining an explicit characteri-
zation of the Γ-limit (hence, of the W in (2.2)) for a given pairwise potential
function w. Now, this chapter is devoted to the results showed in [20], where
we pushed forward the calculations in [25], aimed to determine whether it is
possible or not to recover typical models of hyperelasticity from bond-based
models verifying the natural physical restrictions of frame indi�erence and
isotropy. Our conclusion is that nonlinear bond-based models converge, in
the sense of Γ-convergence, to hyperelastic models with very limited struc-
ture and degrees of freedom. In particular, they cannot converge to a typical
hyperelastic model like Mooney-Rivlin. This result is in agreement with the,
previously mentioned, limitations of the bond-based peridynamic model.

Thus, what we show in this chapter is that the nonlinear bond-based
peridynamic model su�ers from a similar weakness to its linear counterpart.
This drawback was hinted at but, to the best of our knowledge, not actually
proved. Additionally, we corroborate that the linearization of our limit model
requires materials to have a Poisson ratio 1

4 , but through a di�erent path:
starting from a nonlinear peridynamic model, we take the limit to arrive at a
nonlinear local model and then we linearize it to obtain a linear local model.

Other references dealing with convergence of peridynamics models to lo-
cal models as the horizon goes to zero are the following. In the nonlinear
situation, in [106], the pointwise convergence of the state-based peridynam-
ics to classical local models is shown, but the mathematical study in the
framework of Γ-convergence is still pending. For the linear case, in [82], the
Γ-convergence of linear elastic peridynamics to the local Navier-Lamé system
is shown. This work is extended in [83] to the geometrically nonlinear situa-
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tion. Another reference dealing with the convergence of a nonlocal operator
over bounded domains is [26], where it is considered a truncated fractional
laplacian in a ball of radius δ, as well as both limits, i.e., when δ goes to zero,
recovering the classical operator, and when δ goes to in�nity, they recovered
the fractional one.

The outline of the chapter is the following. Section 2.1 is devoted to
preliminaries, including a summary of the Γ-convergence procedure to pass
from nonlocal energies (2.1) to the local energy (2.2) as the horizon δ goes
to zero. In Section 2.2, frame indi�erence and isotropy are imposed to bond-
based models, characterizing the pairwise potential densities and giving rise
to energies verifying those physical properties. It is also shown that frame
indi�erence and isotropy are preserved when passing to the limit as δ → 0. In
Section 2.3, we perform a preliminar analysis on which stored-energy densities
can be recovered when making the Γ-limit as δ → 0 of bond-based models
satisfying frame indi�erence and isotropy. Finally, in Section 2.4 we show that
Mooney-Rivlin models are not recoverable. For this, apart from the analysis
of the previous section, we need a property of quasiconvexity theory, which
states that a strict quasiconvex function can only be the quasiconvexi�cation
of itself.

2.1 Preliminaries

2.1.1 Nonlinear bond-based peridynamics

For a given deformation u : Ω → Rm, a general nonlinear energy in the
framework of bond-based peridynamics takes the form

Enl(u) =

�
Ω

�
Ω
w(x, x− x′, u(x)− u(x′)) dx′ dx−

�
Ω
F (x) · u(x) dx,

[77, 103, 107]. The pairwise potential function w : Ω × Ω̃ × Rm → R, with
Ω̃ = Ω − Ω (set of x − x′ with x, x′ ∈ Ω), measures the interaction between
particles x, x′ ∈ Ω both in the reference and deformed con�gurations. As
the interaction force between particles is expected to increase as the distance
between them decreases, it is natural to assume that the pairwise density
w(x, ·, ỹ) blows up at the origin for each x ∈ Ω and ỹ ∈ Rm. Furthermore,
it is also natural to assume that particles separated by a distance bigger
than a parameter δ > 0 do not interact at all, so that w(·, x̃, ·) = 0 if |x̃| >
δ. The parameter δ is the previously mentioned horizon of interaction of
particles, and it is a relevant part of the peridynamic model. The application
of the direct method of the Calculus of Variations for this type of functionals
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was studied in [23]. An existence theory was obtained in the Lebesgue Lp

spaces under suitable growth conditions on w, whereas the relevant nonlocal
convexity notion requires the function

y 7→
�

Ω
w(x, x− x′, y − v(x′)) dx′ (2.3)

to be convex for a.e. x ∈ Ω and any test function v ∈ Lp(Ω,Rm). This
condition is actually equivalent, under some technical assumptions, to the
weak lower semicontinuity of the functional

Inl(u) =

�
Ω

�
Ω
w(x, x− x′, u(x)− u(x′)) dx′ dx (2.4)

in Lp(Ω,Rm) (see [27,53]). The study of this nonlocal convexity notion, which
is strictly weaker than usual convexity of w(x, x̃, ·), has been deepened in [24],
including relaxation of functionals lacking this condition (see also [85] for the
relaxation).

2.1.2 Passage from nonlocal to local as the horizon goes to

zero

It is natural to wonder whether the local energy I in (1.4) can be recovered as
the limit of the nonlocal energy Inl in (2.4) when δ → 0. The right framework
to study convergence of variational problems is Γ-convergence (subsection
1.2.3), as, in particular, it implies convergence of minimizers and minimum
energies. The Γ-convergence of nonlocal functionals Inl as the horizon tends
to zero was studied in [25] in an abstract way. It was shown that under
natural assumptions the Γ-limit is a local vector variational problem, and the
process to construct such a Γ-limit was explicitly described. The local Γ-limit
is recovered in several steps:

i) Scaling. Making explicit the dependence of the nonlocal functional with
respect to δ, we include a parameter β, that will be clari�ed below, and
scale the functional as

Iδ(u) :=
n+ β

δn+β

�
Ω

�
Ω∩B(x,δ)

w(x, x− x′, u(x)− u(x′)) dx′ dx. (2.5)

ii) Blow-up at zero. We assume β ∈ R is such that there exists the limit

w◦(x, x̃, ỹ) := lim
t→0

1

tβ
w(x, tx̃, tỹ), (2.6)

for a.e. x ∈ Ω, and all x̃ ∈ Ω̃ and ỹ ∈ Rm.
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iii) De�nition of the local density w̄. We de�ne w̄ : Ω× Rn×n → R as

w̄(x,A) :=

�
Sn−1

w◦(x, z,Az) dHn−1(z) x ∈ Ω, A ∈ Rn×n,

where Sn−1 is the n-dimensional unit sphere.

iv) Quasiconvexi�cation. The candidate to Γ-limit of Iδ as δ → 0 is then

Ĩ(u) :=

�
Ω
w̄qc(x,Du(x)) dx,

where wqc(x, ·) is the quasiconvexi�cation ( [39]) of w̄(x, ·) de�ned as

w̄qc(x,A) := sup{v(x,A) : v(x, ·) ≤ w̄(x, ·) and v(x, ·) quasiconvex}.

It is shown in [25] that, under several assumptions on the pairwise potential
density w, including the nonlocal convexity (2.3), Iδ Γ-converges to Ĩ.

We make some comments on the steps i)�ii) of the above procedure. The
scaling δ−(n+β) of (2.5) is the only possible one, since it makes that Iδ(u)→�

Ω w̄(x,Du) for smooth functions u, and any other scaling f(δ) with f(δ)�
δ−(n+β) or δ−(n+β) � f(δ) would make the limit identically zero or identically
in�nity. The existence of the limit (2.6) and, hence, of β is natural since some
models (see, e.g., [54, 93]) based on fractional Sobolev spaces take the form
w(x, x̃, ỹ) = |x̃|−α|ỹ|p for some α, p ∈ R; in this regard, see Example 2.3.2
below.

Our aim in what follows is to check whether typical stored-energy densities
in hyperelasticity can be obtained by this procedure. This amounts to asking
whether hyperelastic models can be obtained as the Γ-limit of bond-based
peridynamics models as the horizon of interaction of particles goes to zero.
More concretely, given a polyconvex stored-energy density W , whether there
exists a pairwise potential function w such that its corresponding functional
Iδ Γ-converges to I as δ → 0.

2.2 Frame-indi�erence and isotropy in the bond-based

model

In this section we explore how frame indi�erence and isotropy are translated
in mathematical terms into the nonlinear bond-based model. For a pairwise
potential function w, frame indi�erence requires that

w(x, x̃, ỹ) = w(x, x̃, Rỹ), a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm, R ∈ SO(m).
(2.7)
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We are also interested in isotropic materials, i.e., those whose deformation
energy does not depend on the loading, or stretching, direction. Mathemati-
cally, this is imposed on the pairwise potential function by requiring

w(x, x̃, ỹ) = w(x,Rx̃, ỹ), a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm, R ∈ SO(n).
(2.8)

The next result, which has appeared in the literature before (for instance
in [103,107]), is straightforward.

Proposition 2.2.1. The bond-based model satis�es frame indi�erence and
isotropy (i.e., the pairwise potential function w satis�es (2.7) and (2.8)) if
and only if there exists w̃ : Ω× R× R→ R such that

w(x, x̃, ỹ) = w̃(x, |x̃|, |ỹ|) a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm.

An interesting question is whether frame indi�erence and isotropy are
inferred to the Γ-limit obtained as the horizon goes to zero. The answer to
this question is positive, as the next result shows.

Proposition 2.2.2. Given a pairwise potential function w, assume there
exists β ∈ R such that the limit in (2.6) exists and the function w◦ may be
de�ned. If the pairwise potential function w satis�es (2.7) and (2.8), then
the function W , obtained from w by the procedure described in Section 2.1.2
(W = w̄qc), satis�es (1.1) (frame indi�erence)

W (x,RA) = W (x,A) ∀x ∈ Ω, A ∈ Rm×n, R ∈ SO(m)

and (1.2) (isotropy)

W (x,AR) = W (x,A) ∀x ∈ Ω, A ∈ Rm×n, R ∈ SO(m).

Proof. We prove frame indi�erence and isotropy of W all at once, but we
emphasize that any of those properties of W is inferred independently from
the corresponding property of w. By Proposition 2.2.1, there exists w̃ such
that

w(x, x̃, ỹ) = w̃(x, |x̃|, |ỹ|), a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm.

By assumption, there exists β ∈ R such that

w◦(x, x̃, ỹ) := lim
t→0

1

tβ
w(x, tx̃, tỹ), a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm.

Then

w◦(x, x̃, ỹ) = lim
t→0

1

tβ
w̃(x, t|x̃|, t|ỹ|), a.e. x ∈ Ω, x̃ ∈ Ω̃, ỹ ∈ Rm,
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and we write, with a small abuse of language, that

w◦ = w◦(x, |x̃|, |ỹ|).

Given two rotations R1 ∈ SO(m) and R2 ∈ SO(n),

w̄(x,R1AR2) =

�
Sn−1

w◦(x, |z|, |R1AR2z|) dHn−1(z)

=

�
Sn−1

w◦(x, |z|, |AR2z|) dHn−1(z)

=

�
Sn−1

w◦(x, |R−1
2 z|, |Az|) dHn−1(z)

=

�
Sn−1

w◦(x, |z|, |Az|) dHn−1(z)

= w̄(x,A),

hence w̄ satis�es (1.1) and (1.2), and, therefore, by [39, Th. 6.14], so does its
quasiconvexi�cation w̄qc = W .

2.3 Which local densities can be recovered from non-

local ones?

In this section we make it explicit the relationship between a pairwise po-
tential function w and the stored-energy function obtained from it by the
previous Γ-convergence procedure, in the presence of frame indi�erence and
isotropy. We obtain an explicit identity involving those two functions. In
that way, if w is a pairwise potential function such that the corresponding
sequence of nonlocal functionals Γ-converges to the local functional given by
W , the functions w and W are related by that identity.

Thus, it provides a criterium in order to check whether a local functional
with energy densityW may be obtained as the Γ-limit of functionals like (2.5).
There is no doubt this is interesting from a mathematical point of view, but
also from a mechanical perspective, since it permits to answer whether local
hyperelastic energies are the Γ-limit of nonlocal bond-based nonlinear models
as the horizon goes to zero.

For the next result we consider a pairwise potential function w verifying
the frame indi�erence and isotropy properties, and for simplicity in the expo-
sition we assume that the material is homogeneous, i.e., w does not depend
on the material point x, so that w = w(x̃, ỹ). By Proposition 2.2.1, there
exists w̃ : R× R→ R such that

w(x̃, ỹ) = w̃(|x̃|, |ỹ|), x̃ ∈ Ω̃, ỹ ∈ Rm.
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Note that step ii) of Section 2.1.2 makes w◦ a homogeneous function of de-
gree β in the pair (x̃, ỹ), i.e., w◦(x, tx̃, tỹ) = tβw◦(x, x̃, ỹ). Therefore, we may
assume, without loss of generality, that w is itself homogeneous of degree
β, which amounts to saying that w = w◦, with w◦ de�ned by (2.6). Then,
according to Section 2.1.2, the density of the Γ-limit of Iδ is the quasiconvex-
i�cation of the function

w̄(A) =

�
Sn−1

w(z,Az) dHn−1(z) =

�
Sn−1

w̃(|z|, |Az|) dHn−1(z)

=

�
Sn−1

w̃(1, |Az|) dHn−1(z).

Notice that the dependence of w on x̃ is irrelevant in order to obtain w̄.
The above process motivates the following de�nition of recoverable func-

tion.

De�nition 2.3.1. The function W : Rm×n → R is recoverable if there exist
w̄ : Rm×n → R and w̃ : {1} × [0,∞)→ R such that

w̄(A) =

�
Sn−1

w̃(1, |Az|) dHn−1(z), A ∈ Rm×n (2.9)

and W = w̄qc.

The following result gives a necessary and su�cient condition for a w̄ to
satisfy (2.9) without invoking w̃. We denote by σn−1 the Hn−1 measure of
Sn−1, and by

�
the mean integral.

Proposition 2.3.1. The function w̄ satis�es (2.9) if and only if for every
A ∈ Rn×n one has

w̄(A) =

 
Sn−1

w̄(|Az|I) dHn−1(z). (2.10)

In this case, a function w̃ giving rise to (2.9) is

w̃(1, t) =
w̄(tI)

σn−1
, t ≥ 0. (2.11)

Proof. Assume w̄ satis�es (2.9) for some w̃. Fixed z ∈ Sn−1, by (2.9) we have

w̄(|Az|I) =

�
Sn−1

w̃(1,
∣∣|Az|Iz′∣∣) dHn−1(z′) =

�
Sn−1

w̃(1, |Az|) dHn−1(z′)

= σn−1w̃(1, |Az|),

hence, combining this with (2.9) we obtain (2.10).
Conversely, assuming that (2.10) holds we de�ne w̃ as (2.11) and we read-

ily obtain (2.9).
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What formula (2.10) says is that w̄ is determined just by its values in
matrices multiples of the identity.

We implement Proposition 2.3.1 to �nd several examples of stored-energy
functions that come or do not come from a w̃ as in (2.9).

Example 2.3.1. The functional

Iδ(u) =
n

δn

�
Ω

�
Ω∩B(x,δ)

n

σn−1

|u(x)− u(x′)|2

|x− x′|2
dx′ dx, u ∈ L2(Ω,Rm)

Γ-converges as δ → 0 to

I(u) =

�
Ω
|Du(x)|2 dx, u ∈ H1(Ω,Rm).

This assertion is justi�ed by the result of Section 2.1.2 (noting that β = 0
in this case), formula (2.10) and the following simple computation:

w̄(A) =

�
Sn−1

n

σn−1
|Az|2 dHn−1(z) = n

m∑
i=1

 
Sn−1

 n∑
j=1

Aijzj

2

dHn−1(z)

= n

m∑
i=1

n∑
j,k=1

 
Sn−1

AijAikzjzk dHn−1(z) =

m∑
i=1

n∑
j=1

A2
ij

= |A|2.

The following example is a generalization of Example 2.3.1, with di�erent
exponents.

Example 2.3.2. Let p > 1 and α < n+ p. Then the functional

Iδ(u) =
n+ p− α
δn+p−α

�
Ω

�
Ω∩B(x,δ)

|u(x)− u(x′)|p

|x− x′|α
dx′ dx, u ∈ Lp(Ω,Rm)

Γ-converges as δ → 0 to

I(u) =

�
Ω

�
Sn−1

|∇u(x)z|p dHn−1(z) dx, u ∈W 1,p(Ω,Rm).

Again, this is a consequence of the procedure of Section 2.1.2, since the
assumptions of [25] are met. In this case we have β = p−α and the function

Rn×n 3 A 7→
�
Sn−1

|Az|p dHn−1(z) (2.12)

is convex, hence quasiconvex.
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Example 2.3.2 recovers a similar result of [94], in which a limit procedure
is done without the device of Γ-convergence. In particular, he shows that
the limit energy density (2.12) is independent of α and can be expressed as
a function of the principal stretches of A. We also recover that result, since
the energy density (2.12) is isotropic.

The following result shows in particular that |A|p does not satisfy (2.10)
for p /∈ {0, 2}, despite the representation (2.12). Indeed, as a consequence of
the Examples 2.3.1 and 2.3.3, we have that the only functions of |A|2 that
satisfy (2.10) are a�ne functions of |A|2.

Example 2.3.3. Let g : [0,∞) → R be a non-a�ne function of class C2.
Then the function g(|A|2) does not satisfy (2.10).

Indeed, assume, for a contradiction, that formula (2.10) holds. Then,

g(|A|2) =

 
Sn−1

g
(∣∣|Az|I∣∣2) dHn−1(z) =

 
Sn−1

g
(
n|Az|2

)
dHn−1(z).

As g is of class C2 and non-a�ne, there exists an interval I ⊂ (0,∞) such
that g′′|I > 0 or g′′|I < 0. Suppose that g′′|I > 0 and take any A such
that the set {|Az| : z ∈ Sn−1} contains more than one point, and such that
{n|Az|2 : z ∈ Sn−1} ⊂ I. Then, by Jensen's inequality, using that g is strictly
convex in {n|Az|2 : z ∈ Sn−1}, we obtain

 
Sn−1

g
(
n|Az|2

)
dHn−1(z) > g

(
n

 
Sn−1

|Az|2 dHn−1(z)

)
= g(|A|2),

which is a contradiction. If g′′|I < 0, the inequality above is reversed and we
also obtain a contradiction.

The following example shows in particular that | cof A|p does not satisfy
(2.10) for p ≥ 1.

Example 2.3.4. Fix n = m = 3. Let g : [0,∞) → R be a convex function
such that lim supt→∞ g(t) = ∞. Then the function w̄(A) = g(| cof A|) does
not satisfy (2.10).

Indeed, given A ∈ R3×3 and z ∈ S2 we have that |cof(|Az|I)| =
√

3|Az|2,
so if formula (2.10) holds then, by Jensen's inequality,

g(| cof A|) =

 
S2

g
(√

3|Az|2
)
dH2(z) ≥ g

(√
3

 
S2

|Az|2 dH2(z)

)
= g

(
1√
3
|A|2

)
.
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ones?

Now �x λ > 0 and consider A as the matrix with diagonal elements λ, λ−1, 1.
Then, the inequality

g(| cof A|) ≥ g
(

3−1/2|A|2
)

reads as

g
(√

λ2 + λ−2 + 1
)
≥ g

(
3−1/2(λ2 + λ−2 + 1)

)
,

which amounts to saying that

g (t) ≥ g
(

3−1/2t2
)
, t ≥

√
3.

Fix t0 ≥
√

3. Then

max
[t0,3−1/2t20]

g ≥ max
[3−1/2t20,3

−3/2t40]
g.

Repeating this argument and applying induction we �nd that

max
[t0,3−1/2t20]

g ≥ max[
t0,
√

3
(
t0√

3

)2n
] g

for all n ∈ N. Taking t0 = 2
√

3 we obtain that

max
[2
√

3,4
√

3]
g ≥ max

[2
√

3,22n
√

3]
g.

Consequently,

max
[2
√

3,4
√

3]
g ≥ sup

[2
√

3,∞)
g,

which contradicts the assumption lim supt→∞ g(t) =∞.

In Example 2.3.4, the convexity hypothesis on g may be relaxed to g being
convex on an interval [a,∞) for some a > 0. A similar reasoning can be done
with g(detA), but we postpone to the next section a more de�nitive result.

We �nish this section by showing that the linearization of a recoverable
function has a Poisson ratio 1

4 .

Example 2.3.5. Let m = n = 3. Let w̄ : R3×3 → R be the function described
in the procedure of Section 2.1.2. Assume that it is of class C2, comes from
a homogeneous isotropic material, Dw̄(I) = 0 and is quasiconvex. Then its
linearization gives rise to a linear elastic material with Poisson's ratio equal
to 1

4 . See [36] for a mathematical linear elasticity theory.
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Chapter 2. Bond-based peridynamics fails to recover hyperelasticity

Indeed, by De�nition 2.3.1 there exists g : [0,∞) → R of class C2 such
that

w̄(A) =

 
S2

g(|Az|) dH2(z), A ∈ R3×3. (2.13)

Let C be the elasticity tensor of w̄. On the one hand, as w̄ is isotropic, C is
of the form

Ce · e = 2µ |e|2 + λ (tr e)2 , e ∈ R3×3
s , (2.14)

where R3×3
s stands for the set of symmetric R3×3 matrices, and µ and λ are

the Lamé moduli. Poisson's ratio is then calculated through

ν =
λ

2(λ+ µ)
.

On the other hand, given e ∈ R3×3
s and de�ning f(t) = w̄(I + te), we have

that the assumption Dw̄(I) = 0 yields f ′(0) = 0, while f ′′(0) = Ce · e. A
standard calculation starting from (2.13) shows that equality f ′(0) = 0 implies
g′(1) = 0, while

f ′′(0) = g′′(1)

 
S2

(z · ez)2 dH2(z). (2.15)

From (2.14) we can see that

µ =
Ce · e

2
for any e ∈ R3×3

s with tr e = 0 and |e| = 1

and

3λ+ 2µ =
CI · I

3
.

From (2.15) we compute Cē · ē for ē being the diagonal matrix with diagonal
elements 1√

2
, −1√

2
, 0. We obtain

Cē · ē = g′′(1)

 
S2

(z · ēz)2 dH2(z) =
g′′(1)

2

 
S2

(
z4

1 − 2z2
1z

2
2 + z4

2

)
dH2(z)

=
2g′′(1)

15
,

where in the last equality we have used the formulas
 
S2

z4
1 dH2(z) =

 
S2

z4
2 dH2(z) =

1

5
,

 
S2

z2
1z

2
2 dH2(z) =

1

15

(see, e.g., [82, App. A] or [80, App.]). Now, again from (2.15) we compute

CI · I = g′′(1)

 
S2

|z|4 dH2(z) = g′′(1).
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With this we obtain that

µ =
g′′(1)

15
, λ =

g′′(1)

15

and, �nally,

ν =
1

4
.

The issue of the Poisson ratio 1
4 in the linear bond-based peridynamic

model is well known [103, Sect. 11]. Thus, we have arrived at the same
conclusion through a di�erent process. Apart from the fact that we use Γ-
convergence, our approach follows the order: we start with a nonlinear peri-
dynamic model, then we take the limit in the horizon to a nonlinear local
model, and �nally we linearize to obtain a linear local model. In contrast, in
references [48, 55, 81, 107] the order is: �rst a nonlinear peridynamic model,
then a linear peridynamic model, and �nally a linear local model.

2.4 Mooney-Rivlin materials are not recoverable

By small adaptations of the arguments of Examples 2.3.3 and 2.3.4, one can
exhibit large families of stored-energy functions w̄ that do not satisfy (2.10).
Those examples by themselves do not prove that they are not recoverable.
Without the aim of being exhaustive, we present in this section the fact
that Mooney-Rivlin materials are not recoverable. In order to do that, we
will use the following su�cient condition for which equality W = w̄ in the
procedure of Section 2.1.2 holds. This result is possibly known for experts
in quasiconvexity, but we have not found a reference of it. First we need the
de�nition of strict quasiconvexity. We say that a function ψ : Rm×n → R is
strictly quasiconvex if and only if

ψ(A) <

�
(0,1)n

ψ(A+Dv(x)) dx, (2.16)

for all matrices A ∈ Rm×n and test functions v ∈ C∞c ((0, 1)n,Rm) \ {0}.
The de�nition of strict polyconvexity is as follows. We say that ψ :

Rm×n → R is strictly polyconvex if there exists a strictly convex function
g de�ned in the set of minors of Rm×n matrices such that ψ(A) = g(M(A))
for all A ∈ Rm×n, where M(A) is the vector formed by all minors of the
matrix A is a given order.

The following su�cient condition for strict quasiconvexity is useful.

Proposition 2.4.1. Any strictly polyconvex function is strictly quasiconvex.
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Chapter 2. Bond-based peridynamics fails to recover hyperelasticity

Proof. Let ψ : Rm×n → R be strictly polyconvex, and let g be strictly convex
such that ψ(A) = g(M(A)) for all A ∈ Rm×n. Fix A ∈ Rm×n and v ∈
C∞c ((0, 1)n,Rm) \ {0}. First of all, since M is quasia�ne then, by a well
known result [39],

�
(0,1)n

M(A+Dv(x)) dx = M(A).

Now, applying Jensen's inequality, and having into account that g is strictly
convex, we have that

�
(0,1)n

g(M(A+Dv(x))) dx > g

(�
(0,1)n

M(A+Dv(x)) dx

)
= g(M(A)).

Consequently, ψ is strictly quasiconvex.

The result that we seek guaranteeing the equalityW = w̄ is the following.

Proposition 2.4.2. Let W : Rm×n → R be strictly quasiconvex and let
w̄ : Rm×n → R be such that W = w̄qc. Then W = w̄.

Proof. Our proof is based on the application of gradient Young measures [88].
Let Y(A) be the set of homogeneous gradient Young measures of barycenter
A. It is known that W is strictly quasiconvex if and only if

W (A) <

�
Rm×n

W (F ) dν(F ),

for all A ∈ Rm×n and all ν ∈ Y(A) \ {δA}, where δA ∈ Y(A) is the Dirac
delta at A.

By assumption, W = w̄qc ≤ w̄. Fix A ∈ Rm×n. By the expression
of the quasiconvexi�cation in terms of Young measures ( [88]), there exists
ν ∈ Y(A), such that

w̄qc(A) =

�
Rm×n

w̄(F ) dν(F ).

If ν 6= δA then
�
Rm×n

w̄(F ) dν(F ) ≥
�
Rm×n

W (F ) dν(F ) > W (A),

a contradiction with the fact w̄qc = W . Therefore, ν = δA and, hence,
w̄qc(A) = w̄(A).

48



Section 2.4. Mooney-Rivlin materials are not recoverable

With all those preliminaries, we are in a position to prove the �nal result
of this section.

Proposition 2.4.3. Let n = m = 3. Let g : (0,∞) → [0,∞) be convex and
such that there exists a > 0 for which g|[a,∞) is increasing. Let α, β ≥ 0.
Assume that:

α > 0 or β > 0 or g is strictly convex.

Suppose, in addition, that

if β = 0, for all t ≥ a there exists t1 > t with g(t1) > g(t). (2.17)

Then the function W of (1.3) is not recoverable.

Proof. Assume, for a contradiction, that W is recoverable. We use the nota-
tion of Section 2.1.2. The assumptions of α, β and g imply that W is strictly
polyconvex. By Proposition 2.4.1, it is strictly quasiconvex, and, in turn, by
Proposition 2.4.2 we have that W = w̄.

The proof wil be �nished as soon as we show that w̄ does not satisfy
(2.10). For any A ∈ R3×3, using Jensen's inequality we �nd that

 
S2

|Az|4 dH2(z) ≥
( 

S2

|Az|2 dH2(z)

)2

=
|A|4

9
. (2.18)

Now, it is easy to check that the expression( 
S2

|Az|3 dH2(z)

) 1
3

de�nes a norm in R3×3. Since all norms are equivalent in R3×3, there exists
c > 0 such that  

S2

|Az|3 dH2(z) ≥ c|A|3, A ∈ R3×3.

In fact, we can assume that c ≤ a−2. Using Jensen's inequality, we �nd that
for all A ∈ R3×3 with c|A|3 ≥ a,

 
S2

g(|Az|3) dH2(z) ≥ g
( 

S2

|Az|3 dH2(z)

)
≥ g(c|A|3). (2.19)

Using (2.18) and (2.19), we have that for all A ∈ R3×3 with c|A|3 ≥ a,
 
S2

w̄(|Az|I) dH2(z) ≥ α|A|2 +
β

3
|A|4 + g(c|A|3).
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If w̄ were recoverable, we would have that, if c|A|3 ≥ a,

β| cof A|2 + g(detA) ≥ β

3
|A|4 + g(c|A|3).

Let λ > 0 and letA be the diagonal matrix with diagonal elements λ, 1/λ, 3
√
a/c.

Then, the inequality above reads as

β

(
1 + λ2

(a
c

) 2
3

+
1

λ2

(a
c

) 2
3

)
+ g

((a
c

) 1
3

)
≥

β

3

(
λ2 +

1

λ2
+
(a
c

) 2
3

)2

+ g

(
c

(
λ2 +

1

λ2
+
(a
c

) 2
3

) 3
2

)
.

If β > 0 then

β

(
1 + λ2

(a
c

) 2
3

+
1

λ2

(a
c

) 2
3

)
+ g

((a
c

) 1
3

)
≥ β

3

(
λ2 +

1

λ2
+
(a
c

) 2
3

)2

,

which yields a contradiction when we send λ→∞. If β = 0 we obtain

g

((a
c

) 1
3

)
≥ g

(
c

(
λ2 +

1

λ2
+
(a
c

) 2
3

) 3
2

)
,

which is again a contradiction due to (2.17), since g is increasing in [a,∞),
and

a ≤
(a
c

) 1
3 ≤ c

(
λ2 +

1

λ2
+
(a
c

) 2
3

) 3
2

provided that λ is large enough.

An analogue result holds in the incompressible case.

Proposition 2.4.4. Let n = m = 3. Let α, β ≥ 0. Then the function
W : R3×3 → R ∪ {∞} de�ned by

W (A) =

{
α|A|2 + β| cof A|2, if detA = 1,

∞ if detA 6= 1

is not recoverable.

Proof. Assume, for a contradiction, that W is recoverable. It is easy to check
that the function g : R→ R∪{∞} de�ned by g(t) =∞ for t 6= 1 and g(1) = 0
is strictly convex at t = 1. As in Proposition 2.4.3, W is strictly polyconvex
where it is �nite, so by Propositions 2.4.1 and 2.4.2, W = w̄.

If w̄ were not recoverable, by (2.10) we reach a contradiction by consid-
ering the matrix A with diagonal elements λ, 1/λ, 1 with λ > 1, since the
right-hand side is in�nity, while the left-hand side is �nite.
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Using the ideas of Example 2.3.3, one can generalize Proposition 2.4.3
to rule out the recoverability of many families of functions of the style of
Mooney�Rivlin, but replacing | cof A|2 with another convex function of cof A.
However, for the sake of simplicity, we have restricted ourselves to a quadratic
dependence on cof A.
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Part II
Models based on the s-fractional gradient.

Fractional energy functionals.
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Chapter 3.

Bessel Fractional Spaces

The previous chapter showed us that there are some drawbacks concerning
the nonlinear bond-based model, in particular, at the time of recovering hy-
perelastic models. This leads us to consider alternative nonlocal ones. In this
sense, in the last years there has been a renewed interest in variational prob-
lems involving the so-called Riesz s-fractional gradient which, for a function
u ∈ C∞c (Rn), is de�ned as

Dsu(x) = cn,s

�
Rn

u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy, x ∈ Rn, (3.1)

where cn,s is a suitable constant. Additionally, the s-fractional divergence of
a smooth function φ : Rn → Rn is de�ned as

divs φ(x) = −cn,s pvx

�
Rn

φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy, (3.2)

where pvx stands for the principal value centred at x. These integral operators
have attracted an increasing attention in recent years since the publication of
[99,100]; (see also references [21,22,37,38,102]). In such references, variational
principles for functionals depending on this fractional gradient are addressed,
as well as the fractional PDE derived from those as equilibrium equations.
The authors consider typical Calculus of Variations problems, with standard
growth conditions in which the classical (local) gradient is substituted byDsu.
In particular, they studied existence of minimizers of energy functionals like

I(u) =

�
Rn
W (x, u(x), Dsu(x)) dx (3.3)

for W a convex function in the scalar case, i.e. when u : Rn → R, under
the complementary condition of u equals a �xed function outside of a domain
Ω. The aim of Part II of this thesis is the study of functional (3.3) but in
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the notable more di�cult vectorial case. More concretely, in Chapter 3 the
functional analysis framework for this study is addressed, in Chapter 4 we
show an existence theory extending the previous one to the vectorial case
with a notion weaker than convexity, called polyconvexity (see De�nition
4.0.1). Finally, in Chapter 5 we address the convergence of functional (3.3)
to its local counterpart when s goes to 1.

Both Dsu and divs φ are well de�ned for any u ∈ C∞c (Rn) and φ ∈
C∞c (Rn,Rn), respectively, and satisfy the remarkable property of being dual
operators in the sense of integration by parts (see Corollary 3.1.2). In [102],
the s-fractional gradient together with the s-fractional divergence are stud-
ied in a systematic manner. Several important properties are given, such
as the uniqueness up to a multiplicative constant of the fractional gradi-
ent under natural requirements (invariance under translations and rotations,
homogeneity under dilations and some continuity properties in an appropri-
ate functional space), as well as some fractional calculus rules. The results
in [102] established, both from a mathematical and physical perspective, what
was pointed out earlier in [92, 99,100], namely, that the s-fractional gradient
is the natural de�nition for a fractional di�erential object. We agree with
the previous references on the claim that the s-fractional gradient deserves
more attention in the literature, and likely there will be both more theoret-
ical studies and applications in di�erent contexts. Another reason for which
this object deserves attention is the fact that Dsu converges to the classical
gradient Du as s ↗ 1. Indeed, for u ∈ C∞c (Rn), applying Fourier transform
(see Lemma 3.1.7 ),

D̂su(ξ) =
2πiξ

|2πξ|
|2πξ|s û(ξ),

which converges to D̂u(ξ) as s↗ 1.
This approach based on the fractional gradient would be similar to the

philosophy of the state-based model of peridynamics (Subsection 1.3.2), but
with the signi�cant di�erence of being de�ned over the whole space, which
makes it less suitable for applications but grants it a rather academic interest.
Thus, we could see this as a �rst "academic" model of nonlocal hyperelasticity,
to wit, the fractional case.

This chapter is focused on the study of fractional spaces involving the
s-fractional gradient. The previous operator de�nition allows us to de�ne a
functional space with a rather similar structure to classical Sobolev spaces.
Actually, it naturally leads to the consideration of the space

Hs,p(Rn) = C∞c (Rn)
‖·‖Hs,p
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under the norm

‖u‖Hs,p(Rn) = ‖u‖Lp(Rn) + ‖Dsu‖Lp(Rn).

In fact, this is the notion used in [21, 22, 37, 38]. In this space Hs,p(Rn),
the fractional gradient and divergence are de�ned for general functions in
Hs,p(Rn) through a limit process of Ds and divs, respectively, for compactly
supported smooth functions (see De�nition 3.1.2 and Lemma 3.1.4 ).

Interestingly, these spaces were shown to coincide with Bessel potential
spaces, introduced in [1,6,7,76]; see also [2, Sect. 7.59�7.66]. The Bessel space
Ls,p(Rn) is de�ned, for 1 < p <∞ and s > 0, as

Ls,p(Rn) := gs(L
p(Rn)), (3.4)

where the Bessel potential gs : Rn → R satis�es that its Fourier transform is
given by

ĝs(ξ) = (1 + 4π2|ξ|2)−
s
2 .

In other words, u ∈ Ls,p(Rn) if and only if u can be written as u = gs ∗ f
for a function f ∈ Lp(Rn). This space is usually described by means of the
Fourier transform,

Ls,p(Rn) =
{
u ∈ S ′ : F−1

[
(1 + |ξ|2)

s
2 û
]
∈ Lp(Rn)

}
,

equipped with the norm

‖u‖Ls,p = ‖F−1
[
(1 + |ξ|2)

s
2 û
]
‖p. (3.5)

Both Fϕ and ϕ̂ stand for the Fourier transform of ϕ, and S ′ is the space of
tempered distributions.

As it is clear by the previous de�nition, Bessel spaces were de�ned as
a generalization of classical Sobolev spaces to a fractional order, albeit the
functional spaces which have enjoyed a greater prominence in the fractional
literature have been the Gagliardo fractional spaces W s,p.

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

�
Ω

�
Ω

|u(x)− u(y)|p

|x− y|n+sp
<∞

}
for Ω ⊆ Rn. This can be explained by some of their advantages as they are
related to a notion of fractional p-laplacian and their seminorm consists of
a double integral which makes it easier to deal with than if there were an
absolute value in between (for a broad explanation on these spaces and the
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fractional laplacian see [46]). Nevertheless, the theory on Bessel spaces is re-
emerging since they actually provide structural properties quite useful in the
study of variational problems. Furthermore, the relationship between Bessel
potential spaces and Riesz fractional gradients comes from [99, Th. 1.7], where
it was shown the remarkable fact of identifying Hs,p(Rn) with Bessel spaces,
i.e. Hs,p(Rn) = Ls,p(Rn) for any s ∈ (0, 1) and 1 < p <∞, with equivalence
of the norms ‖·‖Hs,p and ‖·‖Ls,p . Notice that in [2] the notation Ls,p(Rn) is
employed, whereas the same space was denoted by Hs,p(Rn) in [76]; therefore,
all in all and on the basis of this equality of spaces, from now on we will refer
to Hs,p(Rn) as Bessel fractional spaces whereas we will consider the spaces
W s,p as Gagliardo fractional spaces. Moreover, the notation Hs,p(Rn) for
Bessel spaces is consistent with its characterization in terms of the Fourier
transform, which generalizes the characterization via Fourier transform of
Sobolev spaces W k,p(Rn) to non-integer exponents k (see [67, Sect. 6.2.1] for
a detailed discussion on this).

It is also of interest the a�ne subspace of functions verifying a complement
value condition; to be precise, given g ∈ Hs,p(Rn) and a bounded domain
Ω ⊂ Rn, we consider

Hs,p
g (Ω) = {u ∈ Hs,p(Rn) : u = g in Ωc} ,

where Ωc stands for the complement of Ω in Rn. Actually, this is the space
used by [99, 100] to search for minimizers of 3.3 under the fundamental hy-
pothesis of convexity of W in the last variable, as well as natural coercivity
conditions. Taking advantage of the fractional framework and the properties
of Riesz potentials and Fourier transform, they also show some remarkable
results on the functional spaces Hs,p, including a fractional Sobolev-type in-
equality or the compact embedding into Lp.The book [92, Ch. 15] also pays
attention to the s-fractional gradient, providing a proof not based on Fourier
transform of a fractional fundamental theorem of calculus, also proved in [99],
which is used for showing a Sobolev type inequality from Hs,p to Lp. An-
other reference also dealing with the fractional gradient in the case p = 1
is [98], whereas p = ∞ is addressed in some of their results in [73]. Actu-
ally, in [73] they show the very interesting result of the characterization of
the weak lower semicontinuity of functionals like 3.3, and it turned out to
be the quasiconvexity of W , i.e. the same property than in the (vectorial)
classical case. This assumption of quasiconvexity (weaker than polyconvex-
ity) would also provide the existence of minimizers of functionals like 3.3 in
the vectorial case. However, with such assumption some upper bound con-
ditions are also required, which do not �t in hyperelasticity theory where it
is assumed that an in�nite amount of energy is needed to reduce something
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of �nite volume to zero volume (W (u,Dsu) goes to ∞ when detDsu goes to
zero). Those upper bound conditions are avoided assuming polyconvexity. It
is worth mentioning that case p = 1 is intentionally avoided in these chapters.
First, because the original statements of the Bessel spaces properties and em-
beddings (Proposition 3.2.2 and Theorems 3.5.8 and 3.5.14) exclude this case,
and, second, because we are concerned with a general existence theory that
requires re�exive spaces.

This chapter is devoted to the study of Bessel fractional spaces in a way
parallel to any typical introductory exposition of Sobolev spaces (for exam-
ple [32]), including the functional space structural elements required for the
existence theory that follows in Chapters 4 and 5. In the �rst section of this
chapter we �rst introduce the fractional di�erential operators Ds and divs,
as well as some properties that will allow us to extend such de�nitions and
results to every function in the Bessel space Hs,p where the fractional inte-
gration by parts is of major importance. This �rst section is completed with
some interesting formulas where the analogy with the classical case is noticed.
This leads to a proper introduction of the functional spaces Hs,p in Section
3.2 with some considerations regarding density results also tackled in Section
3.4. For that part some fractional calculus facts are required, which are ob-
tained in Section 3.3 and will also prove to be helpful in Chapters 4 and 5.
In Section 3.5 several continuous embeddings from [99] are collected such as
Poincaré-Sobolev inequality. It is also completed with some particular results
whose proofs is needed in Chapter 5 and an alternative proof of the compact
embedding result based on a sort of fractional mean value theorem. Finally,
in Section 3.6 some special functions in Hs,p not included in W 1,p are shown.
Those functions exhibit singularities of interest in Solid Mechanics.

Another possibility for the de�nition of Bessel spaces, also inspired by
the classical construction of Sobolev spaces, would be to consider the space
de�ned as the class of Lp(Rn) functions whose distributional s-fractional gra-
dient is also in Lp(Rn). This approach has been carried out in [33,109]. Given
u ∈ Lp(Rn), the distributional s-fractional gradient is naturally de�ned as the
distribution Dsu given by

〈Dsu, φ〉 = −
�
u(x) divs φ(x) dx, (3.6)

for any φ ∈ C∞c (Rn,Rn). In fact, in [37] (also collected in [109]) is shown
that C∞c (Rn) is dense in the space

{u ∈ Lp(Rn) : Dsu ∈ Lp(Rn,Rn)}
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equipped with the norm ‖·‖Hs,p , and, consequently,

Hs,p(Rn) = {u ∈ Lp(Rn) : Dsu ∈ Lp(Rn,Rn)}

for 1 < p <∞.
As a third option, the fractional gradient Ds could also lead to the de�ni-

tion of normed spaces by requiring its integrability and that of the function,
in the same line as in Sobolev spaces. Moreover, taking into account the
de�nition of Sobolev spaces as the functions whose weak derivative is in Lp,
asking for fractional integration by parts seems to be a reasonable assumption
when working with Ds. Accordingly, we introduce the class

H̃s,p(Rn) =
{
u ∈ Lp(Rn) : D̃su ∈ Lp(Rn,Rn) and u satis�es (IBP)

}
,

for D̃s a extended version of Ds for functions in Lp through principal value,
whenever it exists (see De�nition 3.1.3). We say that a function u : Rn → R
satis�es the integration by parts property (IBP) if D̃su(x) is well de�ned as
a principal value for a.e. x ∈ Rn and

�
D̃su(x) · φ(x) dx = −

�
u(x) divs φ(x) dx (IBP)

for all φ ∈ C∞c (Rn,Rn). We equip H̃s,p(Rn) with the norm

‖u‖H̃s,p = ‖u‖p + ‖D̃su‖p.

However, although we managed to prove that C∞c (Rn) is dense in H̃s,p(Rn)
with an alternative proof to that of [37], it still remains as an open question
the fact that if the distributional fractional gradient exists as a function in
Lp(Rn), then so does the fractional gradient given by the principal value
de�nition and both of them coincide. This fact would imply that H̃s,p(Rn) is
a Banach space and its equivalence with Hs,p(Rn).

In the last decade there has been a great deal of work on fractional
PDE of elliptic type involving the fractional Laplacian in some way. Our
results here enlarge this theory by giving an existence result of minimizers
of nonlinear fractional vector variational problems based on polyconvexity,
which implies, in turn, an existence result of solutions to nonlinear fractional
PDE systems. The amount of references on nonlocal equations and fractional
Laplacian is overwhelming, so for situations related to this work we just cite
the survey [96], the paper [100] and the references therein. Concerning frac-
tional spaces, in [38], it is addressed the space of functions u whose total
fractional variation is �nite, naturally leading to the de�nition of the space

60



Section 3.1. Fractional di�erential operators

BV s(Rn) and to a s-fractional Caccioppoli perimeter concept. Several in-
teresting results are shown, including a continuous embedding of fractional
Sobolev spaces into BV s, a Sobolev-type inequality, a coarea formula, a s-
fractional isoperimetric inequality and a natural s-fractional analogue of De
Giorgi's notion of reduced boundary. It is also worth mentioning [57], where
both the ill- and well-posedness of the classical Eringen model of nonlocal
elasticity are addressed. On the other hand, we would like to point out
the relationship of our study with nonlocal elasticity and peridynamics. As
mentioned above, the variational principle considered in this PartII is not
an appropriate model in solid mechanics, but a version in bounded domains
of the functional (3.3) involving a nonlocal gradient similar to (3.1), satis-
fying additional requirements in order to be physically consistent, �ts into
the peridynamics state-based model for large deformations [107]. Whereas in
Hs,p(Rn), the structural functional analysis facts necessary to prove an ex-
istence theory for functionals like (3.3) are known (continuous and compact
embeddings into Lp), those were still unknown for an analogous version of this
space in bounded domains. In this sense, and since the proof provided for the
fractional Piola identity may be adapted in a more or less straightforward way
to bounded domains, we think this study may be seen as a �rst step towards
a rigorous mathematical theory of nonlocal hyperelasticity. Furthermore, one
primary interest for us is that Hs,p is larger than W 1,p, and functions in Hs,p

may exhibit singularities prohibited in W 1,p, as we point out in subsection
3.6. We would like to emphasize that, contrary to classical elasticity, both
singularities along points (cavitation) and hypersurfaces are compatible with
the existence of solutions in Hs,p (see Theorem 4.3.1). This seems to indicate
that the Lp norm of Dsu not only contributes to the elastic energy, but also
to a kind of surface energy, since the latter is necessary in the modelling of
such singularities (see, e.g., [13, 41,69,86]).

This Part II encompasses the results from [17,21,22].

3.1 Fractional di�erential operators

We start by stating the de�nition of the s-fractional gradient and divergence.
Given a function f : Rn → R and x ∈ Rn such that f ∈ L1(B(x, r)c) for
every r > 0, we de�ne the principal value centered at x of

�
Rn f , denoted by

pvx

�
Rn
f or pvx

�
f,

as

lim
r→0

�
B(x,r)c

f,
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Chapter 3. Bessel Fractional Spaces

whenever this limit exists. We have denoted by B(x, r) the open ball centered
at x of radius r, and by B(x, r)c its complement. As most integrals in this
chapter (and indeed in the whole Part II of the manuscript) are over Rn, we
will use the symbol

�
as a substitute for

�
Rn .

In order to avoid the principal value in (3.1), we �rst establish the following
de�nition for C∞c functions and then we extend it by density. The following
de�nitions of s-fractional gradient and divergence are adapted from [21, 84,
99,100]. Recall that Γ denotes Euler's gamma function.

De�nition 3.1.1. Let 0 < s < 1 and set

cn,s := (n+ s− 1)
Γ
(
n+s−1

2

)
π
n
2 21−s Γ

(
1−s

2

) .
a) Let u ∈ C∞c (Rn). We de�ne Dsu : Rn → Rn as

Dsu(x) := cn,s

�
u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy. (3.7)

b) Let φ ∈ C∞c (Rn,Rn). We de�ne divs φ : Rn → R as

divs φ(x) := −cn,s pvx

�
φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy. (3.8)

The integral (3.7) is easily seen to be absolutely convergent for all x ∈ Rn.
Moreover, regarding (3.8), by odd symmetry,

− cn,s pvx

�
φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy = cn,s

�
φ(x)− φ(y)

|x− y|n+s
· x− y
|x− y|

dy, (3.9)

and this last integral is also absolutely convergent. Furthermore, Dsu ∈
Lq(Rn,Rn) and divs φ ∈ Lq(Rn,Rn) for all q ∈ [1,∞] for smooth and com-
pactly supported u and φ; see Lemma 3.3.1 ( [21, Lemma 3.1]), if necessary.

De�nition 3.1.1 a) naturally extends to vector �elds u ∈ C∞c (Rn,Rn) by
replacing (3.7) with

Dsu(x) := cn,s

�
u(x)− u(y)

|x− y|n+s
⊗ x− y
|x− y|

dy. (3.10)

Here, ⊗ stands for the usual tensor product of vectors.
Analogously, if M : Rn → Rn×n is such that its rows satisfy the assump-

tions of De�nition 3.1.1, we denote by DivsM the column vector-function
whose components are the s-fractional divergences of each row of M .

We now extend De�nition 3.1.1 to a broader class of functions.
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Section 3.1. Fractional di�erential operators

De�nition 3.1.2. Let 0 < s < 1 and 1 ≤ p <∞.

a) Let u ∈ Lp(Rn) be such that there exists a sequence of {uj}j∈N ⊂ C∞c (Rn)
converging to u in Lp(Rn) and for which {Dsuj}j∈N is a Cauchy sequence
in Lp(Rn,Rn). We de�ne Dsu as the limit in Lp(Rn,Rn) of Dsuj as
j →∞.

b) Let φ ∈ Lp(Rn,Rn) be such that there exists a sequence of {φj}j∈N ⊂
C∞c (Rn,Rn) converging to φ in Lp(Rn,Rn) and for which {divs φj}j∈N is
a Cauchy sequence in Lp(Rn). We de�ne divs φ as the limit in Lp(Rn) of
divs φj as j →∞.

Of course, for a u ∈ Lp(Rn,Rn), the de�nition of Dsu is analogous taking
into account (3.10). The operators Ds and divs enjoy a duality property (�rst
shown for smooth functions), which is a fractional integration by parts showed
in [21, Theorem 3.6], whose proof follows the lines of [84, Th. 1.4] (a nonlocal
integration by parts), (see also [38, 84, 102]). The result from [21, Theorem
3.6] was stated under the following alternative de�nition for the fractional
gradient, which still remains as an open question to see whether it coincides
with De�nition 3.1.2 and the distributional fractional gradient (3.6), for more
general functions, or not. Actually, Theorem 3.1.2 helps to provide a su�cient
condition for seeing when such equivalence holds.

De�nition 3.1.3. Let u : Rn → R be a measurable function. Let 0 < s < 1
and x ∈ Rn, we de�ne D̃su at x as

D̃su(x) := cn,s pvx

�
u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy,

whenever the principal value exists.

Notice that D̃su = Dsu for every u ∈ C∞c (Rn). Section 3.4 is devoted to
the study of this operator, a functional space based on it, and their relation-
ship with Hs,p(Rn) and De�nition 3.1.2.

Theorem 3.1.1. Let 0 < s < 1. Let u ∈ L1
loc(Rn) be such that

�
K

�
|u(x)− u(y)|
|x− y|n+s

dy dx <∞. (3.11)

for every compact K ⊂ Rn. Then D̃su ∈ L1
loc(Rn,Rn) and for all φ ∈

C1
c (Rn,Rn),

�
D̃su(x) · φ(x) dx = −

�
u(x) divs φ(x) dx.
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Proof. Assumption (3.11) implies that D̃su exists a.e. as a Lebesgue integral
and D̃su ∈ L1

loc(Rn,Rn), we have

�
D̃su(x) · φ(x) dx = cn,s

� �
u(x)− u(y)

|x− y|n+s

x− y
|x− y|

· φ(x) dy dx. (3.12)

On the other hand, as φ ∈ C1
c (Rn,Rn), by (3.9)

−
�
u(x) divs φ(x)dx = cn,s

� �
u(x)

φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy dx. (3.13)

Thus, it su�ces to establish the equality of the right hand sides of (3.12) and
(3.13); in fact, we will establish the equality of the double integrals in the
domain Dδ := {(x, y) ∈ Rn × Rn : |x− y| ≥ δ} for each δ > 0. We have

�

Dδ

u(x)− u(y)

|x− y|n+s

x− y
|x− y|

· φ(x) dy dx =

�

Dδ

u(x)φ(x)

|x− y|n+s
· x− y
|x− y|

dy dx−
�

Dδ

u(y)φ(x)

|x− y|n+s
· x− y
|x− y|

dy dx.

If we interchange now the roles of x and y in the second integral, using the
symmetry of Dδ, we have

−
�

Dδ

u(y)φ(x)

|x− y|n+s
· x− y
|x− y|

dy dx =

�

Dδ

u(x)φ(y)

|x− y|n+s
· x− y
|x− y|

dy dx,

and therefore
�

Dδ

u(x)− u(y)

|x− y|n+s

x− y
|x− y|

· φ(x) dy dx =

�

Dδ

u(x)
φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy dx,

whence the equality of the right hand sides of (3.12) and (3.13) follows.

In particular, for smooth functions we have the following corollary.

Corollary 3.1.2. Let 0 < s < 1. Then, for all u ∈ C∞c (Rn) and φ ∈
C∞c (Rn,Rn) we have

�
Dsu(x) · φ(x) dx = −

�
u(x) divs φ(x) dx.
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By taking the constant function u = 1 in the previous integration by
parts (Theorem 3.1.2) we obtain a sort of fractional divergence theorem. It
can also be obtained in a straightforward manner through odd symmetry, as
mentioned in [49].

Proposition 3.1.3. Let 0 < s < 1, 1 ≤ p < ∞ and u ∈ Lp(Rn) with
divs u ∈ Lp(Rn) then �

Rn
divs u(x) dx = 0.

The following result shows that the above de�nitions of Dsu and divs φ
(De�nition 3.1.2) are independent of the sequences {uj}j∈N and {φj}j∈N,
respectively, and of the exponent p.

Lemma 3.1.4. Let 0 < s < 1 and 1 ≤ p, q <∞.

a) Let u ∈ Lp(Rn) ∩ Lq(Rn) be such that there exist sequences {uj}j∈N and
{vj}j∈N in C∞c (Rn) such that uj → u in Lp(Rn) and vj → u in Lq(Rn),
and for which {Dsuj}j∈N converges to some U in Lp(Rn,Rn) and {Dsvj}j∈N
converges to some V in Lq(Rn,Rn). Then U = V .

b) Let φ ∈ Lp(Rn,Rn)∩Lq(Rn,Rn) be such that there exist sequences {φj}j∈N
and {θj}j∈N in C∞c (Rn,Rn) such that φj → u in Lp(Rn,Rn) and θj → u
in Lq(Rn,Rn), and for which {divs φj}j∈N converges to some Φ in Lp(Rn)
and {divs θj}j∈N converges to some Θ in Lq(Rn,Rn). Then Φ = Θ.

Proof. We prove a), the proof of b) being analogous.
Let φ ∈ C∞c (Rn,Rn). Then, by Corollary 3.1.2,

�
U · φ = lim

j→∞

�
Dsuj · φ = − lim

j→∞

�
uj divs φ = −

�
udivs φ

and, analogously, �
V · φ = −

�
u divs φ.

Thus, �
U · φ =

�
V · φ

for all φ ∈ C∞c (Rn,Rn), whence U = V .
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3.1.1 Insightful formulas about the fractional gradient

In this subsection we are going to introduce several relevant results which,
from our perspective, could give some insight about the fractional gradient
since they might remind us of formulas involving the classical gradient. Most
of the fractional literature in the last decade has revolved around a particular
operator, the fractional laplacian. The fractional gradient, on the other hand,
is certainly less known, however, it turns out that both operators are related
through a formula similar to that of the classical case. Next result is from [99,
Theorem 1.3].

Theorem 3.1.5. Let s ∈ (0, 1). If u ∈ C∞c (Rn), then

(−∆)su := c̄n,s pvx

�
u(x)− u(y)

|x− y|n+2s
dy = −

n∑
j=1

∂s

∂xsj

∂s

∂xsj
u = −divsDsu

where c̄n,s is a normalizing constant (see [46]) and

∂s

∂xsj
u(x) = Ds

ju(x) := cn,s

�
u(x)− u(y)

|x− y|n+s

xj − yj
|x− y|

dy. (3.14)

Next, we state a result that can be found in [99, Theorem 1.2] and [92,
Lemma 15.9], which says that the fractional gradient can be written as a
convolution of the classical one with the Riesz potential. We �rst recall the
de�nition of Riesz potential. Given 0 < s < n, the Riesz kernel Is : Rn\{0} →
R is

Is(x) =
1

γ(s)

1

|x|n−s
,

where the constant γ(s) is given by

γ(s) =
π
n
2 2s Γ( s2)

Γ(n−s2 )
.

The Riesz potential of a locally integrable function f is given by

Is ∗ f(x) =
1

γ(s)

�
f(y)

|x− y|n−s
dy.

Note the relationship between γ and cn,s:

cn,s =
n+ s− 1

γ(1− s)
. (3.15)

Formally, the following result can be seen as moving the derivative from one
factor of the convolution to the other.
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Theorem 3.1.6. Let s ∈ (0, 1). If u ∈ C∞c (Rn), then

Dsu = I1−s ∗Du.

It is interesting to regard the s-fractional gradient from a Fourier analysis
perspective. As usual, the Fourier transform of an L1 function f : Rn → C is
de�ned as

f̂(ξ) =

�
Rn
f(x)e−2πix·ξ dx,

and then is extended by duality to the class of tempered distributions. Some-
times we will also use the alternative notation F(f) = f̂ . We know that
classical di�erentiation translates, when applying the Fourier transform, into
multiplication of the Fourier transform of a function by a monomial. This
also happens in a fractional sense in this situation. The following result was
proved in [99, Th. 1.4] (but it was mistakenly written with a sign switch); we
include here a proof for the reader's convenience, which appears in [22, Lemma
3.1].

Lemma 3.1.7. Let 0 < s < 1. Then, for all u ∈ C∞c (Rn),

D̂su(ξ) =
2πiξ

|2πξ|
|2πξ|sû(ξ), ξ ∈ Rn.

Proof. By Theorem 3.1.6, Dsu = I1−s ∗Du for any u ∈ C∞c (Rn). We com-
pute the Fourier transform of Dsu in the sense of distributions. We start by
checking that I1−s ∈ S ′, where S is the Schwartz space. Given φ ∈ S,

γ(1− s)〈I1−s, φ〉 =

�
φ(x)

|x|n+s−1
dx

=

�
B(0,1)

φ(x)

|x|n+s−1
dx+

�
B(0,1)c

φ(x)|x| 1

|x|n+s
dx

≤ ‖φ‖∞
∥∥∥∥ 1

|x|n+s−1

∥∥∥∥
L1(B(0,1))

+ ‖φ|x|‖∞

∥∥∥∥ 1

|x|n+s

∥∥∥∥
L1(B(0,1)c)

≤ [‖φ‖∞ + ‖φ|x|‖∞]

[∥∥∥∥ 1

|x|n+s−1

∥∥∥∥
L1(B(0,1))

+

∥∥∥∥ 1

|x|n+s

∥∥∥∥
L1(B(0,1)c)

]
,

which shows that the Riesz potential is a continuous linear map over the
Schwartz space.

Now, Dsu ∈ L1(Rn), since u ∈ C∞c (Rn) (see, e.g., [21, Lemma 3.1] or
Lemma 3.3.1) and, so, Dsu can also be regarded as a tempered distribution.
Therefore, we can apply the Fourier transform to Dsu = I1−s ∗ Du and,

67



Chapter 3. Bessel Fractional Spaces

having in mind that the latter is a convolution of the Riesz potential with a
Schwartz function, as well as that Î1−s(ξ) = |2πξ|−(1−s) (see [110]), we have

D̂su(ξ) = ̂I1−s ∗Du(ξ) = Î1−s(ξ) D̂u(ξ) = |2πξ|−(1−s)D̂u(ξ) =
2πiξ

|2πξ|1−s
û(ξ),

for every ξ ∈ R, as desired.

We have that not just the Fourier transform of this fractional derivative
generalizes that of the classical case but something similar happens with the
fractional gradient of a Fourier transform.

Lemma 3.1.8. Let 0 < s < 1. Then, for all u ∈ C∞c (Rn),

Dsû = F
(
− 2πiξ

|2πξ|
|2πξ|su

)
, ξ ∈ Rn.

Proof. Arguing as in the proof of Lemma 3.1.7 and having in mind that if f
is a radial or even function, then the identity F(f̂) = f holds, we have that

Dsû(ξ) = Dû ∗ I1−s(ξ) = −̂2πiξu ∗ F(Î1−s) = F(−2πiξuÎ1−s)

= F(−2πiξu|2πξ|1−s).

We end this subsection by showing two uniform bounds on the constant
cn,s with respect to s. We denote by ωn the volume of the unit ball in Rn. We
introduce this result here since several other results throughout these chapter
would be written with a constant independent of s which will be used in
Chapter 5.

Lemma 3.1.9. Let n ∈ N. Consider the function cn,· : [−1, 1] → [0,∞),
de�ned as

cn,s =


Γ(n+s+1

2 )
π
n
2 2−sΓ( 1−s

2 )
if − 1 ≤ s < 1,

0 if s = 1.

Then

sup
s∈[−1,1]

cn,s <∞, sup
s∈[−1,1)

cn,s
1− s

<∞ and lim
s↗1

cn,s
1− s

=
1

ωn
.
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Proof. The function cn,· is clearly continuous in [−1, 1). As Γ(z) → +∞ as
z → 0+, we obtain that cn,· is also continuous in [−1, 1]. Now, using the
property zΓ(z) = Γ(z + 1) for z > 0, we �nd that

cn,s
1− s

=
Γ(n+s+1

2 )

π
n
2 21−sΓ(3−s

2 )
,

and, hence, the function s 7→ cn,s
1−s is continuous in [−1, 1) and admits a

continuous extension to [−1, 1]. In fact,

lim
s↗1

cn,s
1− s

=
Γ(1 + n

2 )

π
n
2

=
1

ωn
.

The conclusion follows.

Note that the de�nition of cn,· in the previous statement extends that of
De�nition 3.1.1.

3.2 Fractional spaces

Let 0 < s < 1, m ∈ N and 1 ≤ p < ∞. Given u ∈ C∞c (Rn), we de�ne
‖·‖Hs,p(Rn,Rm) as

‖u‖Hs,p(Rn,Rm) = ‖u‖Lp(Rn) + ‖Dsu‖Lp(Rn×m) ,

which is easily seen to be a norm. We de�ne the space Hs,p as the completion
of C∞c under the norm ‖·‖Hs,p(Rn,Rm), and extend accordingly the de�nition
of ‖·‖Hs,p(Rn,Rm) to H

s,p(Rn,Rm).

Hs,p(Rn,Rm) = C∞c (Rn,Rm)
‖·‖Hs,p

and we denote Hs,p(Rn) = Hs,p(Rn,R). For the sake of simplicity, we will
denote the norm in both Lp(Rn) and Lp(Rn,Rn) by ‖·‖p. This is the de�nition
given in [99] (see also [38]).

It is also of interest the a�ne subspace of functions verifying a complement
value condition; to be precise, given g ∈ Hs,p(Rn) and a bounded domain
Ω ⊂ Rn, we consider

Hs,p
g (Ω) = {u ∈ Hs,p(Rn) : u = g in Ωc} , (3.16)

where Ωc stands for the complement of Ω in Rn.
The space Hs,p, together with the s-fractional gradient as a mathematical

object, was studied in [99,100] (see also [92, Sect. 15.2]). The �rst remarkable
fact is the identi�cation of Hs,p with the classical Bessel potential spaces
(see [2, 97,110]) established in [99, Th. 1.7].
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Theorem 3.2.1. If 1 < p <∞ and s ∈ (0, 1), then

Ls,p(Rn) = Hs,p(Rn)

where Ls,p(Rn) are de�ned as in (3.4).

Thanks to this equivalence, and rewriting well-known properties for Bessel
spaces in terms of Hs,p spaces, we obtain several basic properties that we
summarize in the following proposition (see [2, Ch. 7, p. 221]). We denote by
↪→ continuous inclusion.

Proposition 3.2.2. Set 0 < s < 1 and 1 < p <∞. Then:

a) C∞c (Rn) is dense in Hs,p(Rn).

b) Hs,p(Rn) is re�exive.

c) If s < t < 1 and 1 < q ≤ p ≤ nq
n−(t−s)q , then H

t,q(Rn) ↪→ Hs,p(Rn).

d) If 0 < µ ≤ s− n
p , then H

s,p(Rn) ↪→ C0,µ(Rn).

e) If p = 2, then Hs,2(Rn) = W s,2(Rn) with equivalence of norms.

f) If 0 < s1 < s < s2 < 1 then Hs2,p(Rn) ↪→W s,p(Rn) ↪→ Hs1,p(Rn).

We have denoted by W s,p the classical fractional Sobolev spaces and by
C0,µ the space of Hölder continuous functions of exponent µ.

For a φ ∈ Hs,p(Rn,Rn) there is a natural relation betweenDsφ and divs φ.

Lemma 3.2.3. Let 0 < s < 1 and 1 ≤ p < ∞. Let φ ∈ Hs,p(Rn,Rn). Then
divs φ is well de�ned and trDsφ = divs φ a.e.

Proof. Let {φj}j∈N ⊂ C∞c (Rn,Rn) be a sequence converging to φ in Lp(Rn,Rn)
such that {Dsφj}j∈N converges toDsφ in Lp(Rn,Rn×n). By linearity, trDsφj →
trDsφ in Lp(Rn) as j →∞. In view of De�nition 3.1.2 b) and Lemma 3.1.4 b),
it su�ces to show that trDsφj = divs φj for all j ∈ N. Having in mind that
the integrals of (3.10) and of the right hand side of (3.9) are absolutely con-
vergent, we obtain that

trDsφj(x) = cn,s tr

(�
φj(x)− φj(y)

|x− y|n+s
⊗ x− y
|x− y|

dy

)
= cn,s

�
tr

(
φj(x)− φj(y)

|x− y|n+s
⊗ x− y
|x− y|

)
dy

= cn,s

�
φj(x)− φj(y)

|x− y|n+s
· x− y
|x− y|

dy = divs φj(x),

which concludes the proof.
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The integration by parts formula of Corollary 3.1.2 can be extended to
Hs,p as follows. We denote by p′ the conjugate exponent of p.

Proposition 3.2.4. Let 0 < s < 1 and 1 < p < ∞. Then, for all u ∈
Hs,p(Rn) and φ ∈ Hs,p′(Rn,Rn) we have

�
Dsu(x) · φ(x) dx = −

�
u(x) divs φ(x) dx.

Proof. Let {uj}j∈N ⊂ C∞c (Rn) be a sequence converging to u inHs,p(Rn), and
let {φj}j∈N ⊂ C∞c (Rn,Rn) be a sequence converging to φ in Hs,p′(Rn,Rn).
Then the following convergences hold as j →∞:

uj → u in Lp(Rn), Dsuj → Dsu in Lp(Rn,Rn),

φj → φ in Lp
′
(Rn,Rn), Dsφj → Dsφ in Lp

′
(Rn,Rn×n),

trDsφj → trDsφ in Lp
′
(Rn), divs φj → divs φ in Lp

′
(Rn),

the last convergence due to Lemma 3.2.3. As a consequence,

Dsuj · φj → Dsu · φ and uj divs φj → udivs φ in L1(Rn). (3.17)

By Corollary 3.1.2, for each j ∈ N,
�
Dsuj(x) · φj(x) dx = −

�
uj(x) divs φj(x) dx.

This equality and the convergences (3.17) readily imply the conclusion.

It is natural to consider alternative de�nitions for spaces based on the
fractional gradient. Actually, in [109] it is shown that the space Hs,p(Rn)
coincides with the class of Lp(Rn) functions whose distributional s-fractional
gradient (3.6) is also in Lp(Rn),

Hs,p(Rn) = {u ∈ Lp(Rn) : Dsu ∈ Lp(Rn,Rn)}

for 1 < p < ∞ under the same norm ‖ · ‖Hs,p . In our case, we are also
concerned about the identi�cation Hs,p(Rn) = H̃s,p(Rn) where

H̃s,p(Rn) =
{
u ∈ Lp(Rn) : D̃su ∈ Lp(Rn,Rn) and u satis�es (IBP)

}
,

endowed with the norm ‖u‖H̃s,p = ‖u‖Lp + ‖D̃su‖Lp . In H̃s,p(Rn) we took
the de�nition for the fractional gradient as a principal value operator given in
De�nition 3.1.3 where it was mentioned the question of the equality between
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Chapter 3. Bessel Fractional Spaces

the fractional gradient operators. The question actually encompasses the
equivalence of spaces. We actually show that smooth functions are dense
in H̃s,p(Rn) (see Section 3.4), although we have left for a future work the
fact that if the distributional fractional gradient exists, then, so does the
s-fractional gradient version of De�nition 3.1.3 and both coincide, in order
to have that H̃s,p(Rn) is a Banach space and thus, the equivalence with
Hs,p(Rn).

3.3 Calculus with the s-fractional gradient Dsu

In this section we present some calculus rules which are useful in some com-
putations involving fractional gradients.

We start with a su�cient condition for the s-fractional gradient to be
de�ned everywhere. We denote by [ϕ]C0,α(Rn) and [ϕ]C0,1(Rn) the α-Hölder
and Lipschitz seminorms of ϕ, respectively.

Lemma 3.3.1. Let 0 < α < s < 1 and ϕ ∈ C0,α(Rn) ∩ C0,1(Rn). Then

sup
x∈Rn

�
|ϕ(x)− ϕ(y)|
|x− y|n+s

dy ≤ σn−1

1− s
[ϕ]C0,1(Rn) +

σn−1

s− α
[ϕ]C0,α(Rn) <∞. (3.18)

where σn−1 is the area of the unit sphere of Rn.
If, in addition, ϕ has compact support then Dsϕ ∈ Lr(Rn), for every

r ∈ [1,∞].

Proof. Let x ∈ Rn,
�
|ϕ(x)− ϕ(y)|
|x− y|n+s

dy ≤
�
B(x,1)

[ϕ]C0,1(Rn)

|x− y|n+s−1
dy +

�
B(x,1)c

[ϕ]C0,α(Rn)

|x− y|n+s−α dy

=

�
B(0,1)

[ϕ]C0,1(Rn)

|z|n+s−1
dz +

�
B(0,1)c

[ϕ]C0,α(Rn)

|z|n+s−α dz

≤ σn−1

1− s
[ϕ]C0,1(Rn) +

σn−1

s− α
[ϕ]C0,α(Rn) .

This means that Dsϕ ∈ L∞(Rn). Notice that De�nition 3.1.1 also holds for
Lipschitz functions. Either way this result can also be obtained by density.

Next we are going to see thatDsϕ ∈ L1(Rn) when ϕ has compact support.
Denote by F the support of ϕ. Then

� ∣∣∣∣cn,s � ϕ(x)− ϕ(y)

|x− y|n+s

x− y
|x− y|

dy

∣∣∣∣ dx ≤ |cn,s| (A+B) ,
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where

A :=

� �
F

|ϕ(x)− ϕ(y)|
|x− y|n+s

dy dx, B :=

� �
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

dy dx.

Now, we observe that, applying Fubini's Theorem and (3.18),

A =

�
F

�
|ϕ(x)− ϕ(y)|
|x− y|n+s

dx dy <∞. (3.19)

We notice that |ϕ(x)− ϕ(y)| = 0 for every (x, y) ∈ F c × F c. Therefore,
applying again (3.18) we get

B =

�
F

�
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

dy dx ≤
�
F

�
|ϕ(x)− ϕ(y)|
|x− y|n+s

dy dx <∞. (3.20)

As a consequence of (3.19) and (3.20), Dsϕ ∈ L1(Rn). Finally, through
a standard interpolation argument, we get that Dsϕ ∈ Lr(Rn) for all r ∈
[1,∞].

The proof of Lemma 3.3.1 implies, in particular, that not just Dsϕ but
D̃sϕ is de�ned everywhere for ϕ ∈ C0,α(Rn) ∩ C0,1(Rn) and 0 < α < s < 1.

The following result de�nes a nonlocal operator related to the s-fractional
gradient.

Lemma 3.3.2. Let 1 ≤ q < ∞ and 0 < α < s < 1. Let ϕ ∈ C0,α(Rn) ∩
C0,1(Rn) and k ∈ N. Then, the operator Ks

ϕ : Lq(Rn,Rk×n) → Lq(Rn,Rk)
de�ned as

Ks
ϕ(U)(x) = cn,s

�
ϕ(x)− ϕ(y)

|x− y|n+s
U(y)

x− y
|x− y|

dy, a.e. x ∈ Rn,

is linear and bounded.
Assume, in addition, that ϕ has compact support. Then, given 0 < ᾱ < 1,

there exists a constant C = C(n, q, ᾱ) such that for every s ∈ (ᾱ, 1), every
r ∈ [1, q] and U ∈ Lq(Rn,Rk×n),∥∥Ks

ϕ(U)
∥∥
r
≤ C

(
[ϕ]C0,α(Rn) + [ϕ]C0,1(Rn)

)
‖U‖q . (3.21)

Proof. The operator Ks
ϕ is clearly linear. Let U ∈ Lq(Rn,Rk×n). For all

x ∈ Rn we have∣∣Ks
ϕ(U)(x)

∣∣ ≤ |cn,s|� |ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy,
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so ∣∣Ks
ϕ(U)(x)

∣∣q ≤ 2q−1|cn,s|q (g(x) + h(x)) , (3.22)

with

g(x) :=

(�
B(x,1)

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy

)q
and

h(x) :=

(�
B(x,1)c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy

)q
.

Fix α ∈ (0, ᾱ). Then, applying Hölder's inequality, we get

g(x) ≤ [ϕ]q
C0,1(Rn)

(�
B(x,1)

|U(y)|
|x− y|n+s−1

dy

)q

= [ϕ]q
C0,1(Rn)

(�
B(0,1)

|U(x− z)|
|z|n+s−1

dz

)q

≤ [ϕ]q
C0,1(Rn)

�
B(0,1)

|U(x− z)|q

|z|n+s−1
dz

(�
B(0,1)

1

|z|n+s−1
dz

)q−1

= [ϕ]q
C0,1(Rn)

(
σn−1

1− s

)q−1 �
B(0,1)

|U(x− z)|q

|z|n+s−1
dz,

where σn−1 is the area of the unit sphere of Rn. Integrating,
�
g(x) dx ≤ [ϕ]q

C0,1(Rn)

(
σn−1

1− s

)q−1 �
B(0,1)

1

|z|n+s−1

�
|U(x− z)|qdx dz

= [ϕ]q
C0,1(Rn)

(
σn−1

1− s

)q
‖U‖qq .

(3.23)

As for the term h, applying Hölder's inequality,

h(x) ≤ [ϕ]q
C0,α(Rn)

(�
B(x,1)c

|U(y)|
|x− y|n+s−αdy

)q

≤ [ϕ]q
C0,α(Rn)

�
B(0,1)c

|U(x− z)|q

|z|n+s−α dz

(�
B(0,1)c

1

|z|n+s−αdz

)q−1

= [ϕ]q
C0,α(Rn)

(
σn−1

s− α

)q−1 �
B(0,1)c

|U(x− z)|q

|z|n+s−α dz.
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Integrating,

�
h(x) dx ≤ [ϕ]q

C0,α(Rn)

(
σn−1

s− α

)q−1 �
B(0,1)c

1

|z|n+s−α

�
|U(x− z)|qdx dz

= [ϕ]q
C0,α(Rn)

(
σn−1

s− α

)q
‖U‖qq .

(3.24)

Putting together (6.9), (6.10) and (3.24) we obtain

∥∥Ks
ϕ(U)

∥∥q
q
≤ 2q−1|cn,s|q

(
[ϕ]q

C0,1(Rn)

(
σn−1

1− s

)q
+ [ϕ]q

C0,α(Rn)

(
σn−1

s− α

)q)
‖U‖qq ,

so applying Lemma 3.1.9 we �nd that∥∥Ks
ϕ(U)

∥∥
q
≤ C

(
[ϕ]C0,α(Rn) + [ϕ]C0,1(Rn)

)
‖U‖q (3.25)

for some constant C independent of s ∈ (ᾱ, 1) and U .
Next, we are going to check the boundedness of Ks

ϕ : Lq(Rn,Rk×n) →
L1(Rn,Rk). Denote by F the support of ϕ. Then

� ∣∣Ks
ϕ(U)(x)

∣∣ dx ≤ |cn,s| (A+B) , (3.26)

where

A :=

� �
F

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy dx, B :=

� �
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy dx.

Now, we observe that, applying Fubini's Theorem, Hölder's inequality and
Lemmas 3.3.1 and 3.1.9 there exists C0 > 0 independent of s ∈ (ᾱ, 1) such
that

A ≤
�
F
|U(y)|

�
|ϕ(x)− ϕ(y)|
|x− y|n+s

dx dy ≤ C0Dϕ|F |
1
q′

(�
F
|U(y)|q dy

) 1
q

≤ C0Dϕ|F |
1
q′ ‖U‖q ,

(3.27)

where, for simplicity, we have denoted

Dϕ :=
σn−1

1− s
[ϕ]C0,1(Rn) +

σn−1

s− α
[ϕ]C0,α(Rn) .
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Since |ϕ(x)− ϕ(y)| = 0 for every (x, y) ∈ F c × F c, in view of Hölder's in-
equality and Lemma 3.3.1 we get

B =

�
F

�
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)| dy dx

≤
�
F

(�
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

dy

) 1
q′
(�

F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)|q dy
) 1
q

dx

≤ (C0Dϕ)
1
q′

�
F

(�
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)|q dy
) 1
q

dx.

Using again Hölder's inequality, Lemma 3.3.1 and Fubini's Theorem, we ob-
tain

B ≤ (C0Dϕ)
1
q′

(�
F

�
F c

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)|q dy dx
) 1
q

|F |
1
q′

= (C0|F |Dϕ)
1
q′

(�
F c
|U(y)|q

�
F

|ϕ(x)− ϕ(y)|
|x− y|n+s

dx dy

) 1
q

≤ (C0|F |Dϕ)
1
q′ (C0Dϕ)

1
q

(�
F c
|U(y)|q dy

) 1
q

≤ CDϕ ‖U‖q ,

(3.28)

where C > 0 is a constant independent of s and U . Inequalities (3.26), (3.27),
(3.28) and Lemma 3.1.9 lead us to∥∥Ks

ϕ(U)
∥∥

1
≤ C

(
[ϕ]C0,α(Rn) + [ϕ]C0,1(Rn)

)
‖U‖q , (3.29)

for some constant C independent of s ∈ (ᾱ, 1) and U . The conclusion of
the theorem is obtained through an interpolation of inequalities (3.25) and
(3.29).

As a consequence of Lemma 3.3.2 and a general result, the operator Ks
ϕ is

continuous from the weak topology of Lq(Rn,Rk×n) to the weak topology of
Lq(Rn,Rk) and, in the case of a ϕ of compact support, from the weak topology
of Lq(Rn,Rk×n) to the weak topology of Lp(Rn,Rk) for all p ∈ [1, q].

The next lemma shows the spaces where the sequence {Dsuj} is conver-
gent, provided that {uj} is convergent in Hs,p. Actually, what this lemma
shows is that besides the fact that for u : Rn → R a function with compact
support, Dsu does not need to have compact support, it can be obtained a
fractional equivalent of the fact that if Du ∈ Lp(Rn) then Du ∈ Lr(Rn) for
every r ∈ [1, p].
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Lemma 3.3.3. Let 0 < s < 1 and 1 < p < ∞. Let u ∈ C∞c (Rn) and let
{uj}j∈N ⊂ C∞c (Rn) be a sequence converging to u in Hs,p(Rn). Assume that
there is a compact K ⊂ Rn such that

⋃∞
j=1 suppuj ⊂ K. Then Dsuj → Dsu

in Lr(Rn) for every r ∈ [1, p].

Proof. By linearity, we can assume that u = 0. Call KB = K+B(0, 1). Then

‖Dsuj‖L1(Rn) ≤ ‖D
suj‖Lp(KB) |KB|

1
p′ + ‖Dsuj‖L1(Kc

B) , (3.30)

where |KB| denotes the Lebesgue measure of KB, and p′ is the conjugate
exponent of p.

On the other hand, for every j ∈ N, we use Fubini's Theorem and Hölder's
inequality to get

‖Dsuj‖L1(Kc
B) = |cn,s|

�
Kc
B

∣∣∣∣�
K

uj(x)− uj(y)

|x− y|n+s

x− y
|x− y|

dy

∣∣∣∣ dx
≤ |cn,s|

�
K

�
Kc
B

|uj(x)− uj(y)|
|x− y|n+s

dx dy

≤ |cn,s|
�
K

(�
Kc
B

|uj(x)− uj(y)|p

|x− y|n+s
dx

) 1
p
(�

Kc
B

1

|x− y|n+s
dx

) 1
p′

dy.

(3.31)

Now, for every y ∈ K we have Kc
B − y ⊂ B(0, 1)c, so

�
Kc
B

1

|x− y|n+s
dx =

�
Kc
B−y

1

|z|n+s
dz ≤

�
B(0,1)c

1

|z|n+s
dz <∞.

Now, we will use C to denote a constant (depending on n, s and K) which
can vary through the proof. So, continuing from (3.31) and applying Hölder's
inequality again, we obtain

‖Dsuj‖L1(Kc
B) ≤ C

(�
K

�
Kc
B

|uj(x)− uj(y)|p

|x− y|n+s
dxdy

) 1
p

≤ C ‖uj‖
W

s
p ,p(Rn)

≤ C ‖uj‖Hs,p(Rn) ,

where we have used Proposition 3.2.2 f) in the last step. This inequality,
together with (3.30), leads to

‖Dsuj‖L1(Rn) ≤ C ‖uj‖Hs,p(Rn) → 0,

by assumption. Finally, through a standard interpolation argument, we ob-
tain the convergence Dsuj → 0 in Lr(Rn) for every r ∈ [1, p].
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Remark 3.3.1. Later on this manuscript it will be proven that Hs,p
0 (K) =

C∞c (K)
‖·‖Hs,p

with K a compact set but without asking it to be Lipschitz
yet (Step 1 of Theorem 3.4.8), since K coincides with its closure. In that
case, Lemma 3.3.3 can be extended by density to functions u ∈ Hs,p(Rn) and
{uj}j∈N ⊂ Hs,p(Rn).

Now we introduce a product formula for the s-fractional gradient where
we consider �rst the integral de�nition 3.1.3. We denote by I the identity
matrix of dimension n.

Lemma 3.3.4. Let 0 < s < 1 and 1 < p <∞. Let g ∈ Lp(Rn) be with D̃sg ∈
Lp(Rn,Rn) and ϕ ∈ C1

c (Rn). Then ϕg ∈ Lp(Rn), D̃s(ϕg) ∈ Lp(Rn,Rn) and
for a.e. x ∈ Rn,

D̃s(ϕg)(x) = ϕ(x)D̃sg(x) +Ks
ϕ(gI)(x).

Proof. Clearly ϕg ∈ Lp(Rn). Now, for a.e. x ∈ Rn we have

D̃s(ϕg)(x) = cn,s pvx

�
(ϕg)(x)− (ϕg)(y)

|x− y|n+s

x− y
|x− y|

dy

= cn,s pvx

�
ϕ(x)g(x)− ϕ(x)g(y) + ϕ(x)g(y)− ϕ(y)g(y)

|x− y|n+s

x− y
|x− y|

dy

= ϕ(x)D̃sg(x) +Ks
ϕ(gI)(x).

The term ϕDsg is in Lp(Rn,Rn) since ϕ ∈ C1
c (Rn), while the term Ks

ϕ(gI)
is in Lp(Rn,Rn) by Lemma 3.3.2.

Notice that depending on the regrouping of the terms, this product for-
mula can be written in di�erent expressions. One of such possibilities is
obtained in [38], and in [73] including the case p = ∞. As in Lemma 3.3.4,
the following result computes the s-fractional divergence of a product.

Lemma 3.3.5. Let 0 < s < 1 and 1 < p < ∞. Let g ∈ Lp(Rn,Rn) be with
D̃sg ∈ Lp(Rn,Rn×n) and ϕ ∈ C1

c (Rn). Then ϕg ∈ Lp(Rn,Rn), D̃s(ϕg) ∈
Lp(Rn,Rn×n) and for a.e. x ∈ Rn,

−cn,s pvx

�
ϕg(x) + ϕg(y)

|x− y|n+s
· x− y
|x− y|

dy = ϕ(x)D̃sg(x) +Ks
ϕ(gT )(x).

Last results are adapted (through density) so as to obtain the Leibniz rule
in Hs,p(Rn).
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Lemma 3.3.6. Let u ∈ Hs,p(Rn) and ϕ ∈ C∞c (Rn). Then ϕu ∈ Hs,p(Rn),

Ds(ϕu)(x) = ϕ(x)Dsu(x) +Ks
ϕ(uI)(x),

and
divs(ϕg)(x) = ϕ(x) divs g(x) +Ks

ϕ(gT )(x).

Proof. By de�nition, u ∈ Hs,p(Rn) if and only if there exists a sequence
{uj}j∈N ⊂ C∞c (Rn) such that {uj}j∈N converges to u in Lp(Rn) and {Dsuj}j∈N
is a Cauchy sequence in Lp(Rn,Rn). It is immediate to check that ϕuj →
ϕu in Lp(Rn). Let us check that {Ds(ϕuj)}j∈N is a Cauchy sequence in
Lp(Rn,Rn). Owing to Lemma 3.3.4 we have

Ds(ϕuj)−Ds(ϕuk) = Ds(ϕ(uj − uk)) = ϕDs(uj − uk) +Ks
ϕ(uj − uk),

with j, k ∈ N. Since Ds(uj−uk)→ 0 in Lp(Rn,Rn) as j, k →∞, we also have
that ϕDs(uj − uk) → 0 in Lp(Rn,Rn). By Lemma 3.3.2, since uj − uk → 0
in Lp(Rn) as j, k →∞, we obtain that Ks

ϕ(uj − uk)→ 0 in Lp(Rn,Rn). This
shows that ϕu ∈ Hs,p(Rn). The Leibniz rule for the s-fractional divergence
is obtained analogously from Lemma 3.3.5.

3.4 Density results

This section is devoted to see if an alternative de�nition of functional spaces
based on the fractional gradient would coincide with Hs,p. This was already
hinted at the introduction and at the end of Section 3.2. In particular, we
consider the class

H̃s,p(Rn) =
{
u ∈ Lp(Rn) : D̃su ∈ Lp(Rn,Rn) and u satis�es (IBP)

}
,

At the moment, the results we have obtained show that every function in
H̃s,p(Rn) can be obtained as the limit of a sequence of compactly supported
smooth functions. However, this just gives us the inclusion H̃s,p(Rn) ⊂
Hs,p(Rn). In order to obtain the reverse one, it is necessary to check that
the fractional gradient of every function in Hs,p(Rn) can be written using
de�nition 3.1.3 as well. This coincidence still remains open. The principal
di�culty we �nd is that the fractional gradient D̃s is de�ned in full generality
as a principal value.

Theorem 3.4.1. Set 1 < p < ∞ and s ∈ (0, 1). Then, C∞c (Rn) is dense in
H̃s,p(Rn) with respect to the norm ‖·‖Hs,p . Thus,

C∞c (Rn) ∩ H̃s,p(Rn)
‖·‖Hs,p

= H̃s,p(Rn).
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Remark 3.4.1. As mentioned in the introduction, in [33, Th. A.1] it was
shown the density of compactly supported smooth functions in the class of
Lp(Rn) functions whose s-fractional distributional gradient is in Lp(Rn,Rn);
as a consequence, [33, Cor. 2.1],

{u ∈ Lp(Rn) : Dsu ∈ Lp(Rn,Rn)} = Hs,p(Rn).

Now, whenever u ∈ H̃s,p(Rn), we have D̃su = Dsu and consequently Theorem
3.4.1 follows as a consequence of [33, Th. A.1]. In any case, the proof provided
here di�ers considerably from that of [33,109]. We �nd that it is interesting in
its own right, because we work directly with D̃su, de�ned as a principal value.
Our approach also leads us to the density result of Hs,p

0 (Ω) for a bounded
domain Ω.

The proof of Theorem 3.4.1 follows the classical path for proving density of
compactly supported smooth functions inW 1,p(Rn), namely, using smoothing
by convolution with a sequence of molli�ers and truncation with a sequence of
cut-o� functions. The main di�culty is that we deal with integral operators
involving principal values. We start by de�ning, for each 0 < s < 1 and r > 0,
the operators Ds

r and divsr as

Ds
ru(x) := cn,s

�
B(x,r)c

u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy

and

divsr φ(x) := −cn,s
�
B(x,r)c

φ(x) + φ(y)

|x− y|n+s
· x− y
|x− y|

dy.

These operators consist of truncated versions of the integrals appearing in
the de�nition of fractional gradient and divergence, respectively. In fact, by
de�nition of principal value, for u : Rn → R measurable

lim
r↘0

Ds
ru(x) = D̃su(x) (3.32)

whenever D̃su(x) exists. Notice that the fractional divergence is going to be
applied to smooth functions, so no alternative de�nition is required. Then,
for φ a smooth function we obviously have that

lim
r↘0

divsr φ(x) = divs φ(x).

Lemma 3.4.2. Let q ∈ (1,∞) and 0 < s < 1. Then there exists a constant
C = C(n, s, q) such that

‖divsr ϕ‖q ≤ C ‖ϕ‖W 1,q(Rn,Rn) , (3.33)

for any ϕ ∈ C∞c (Rn,Rn) and any r > 0.
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Proof. We �x r < 1 and x ∈ Rn. Note that, by odd symmetry,

divsr ϕ(x) =

− cn,s

[�
B(x,1)\B(x,r)

ϕ(y)− ϕ(x)

|x− y|n+s
· x− y
|x− y|

dy +

�
B(x,1)c

ϕ(y)

|x− y|n+s
· x− y
|x− y|

dy

]
,

so

|divsr ϕ(x)| ≤ C

[�
B(x,1)

|ϕ(y)− ϕ(x)|
|x− y|n+s

dy +

�
B(x,1)c

|ϕ(y)|
|x− y|n+s

dy

]
, (3.34)

where, from now on, C > 0 denotes a constant depending on n, s and q whose
value may vary from line to line.

Now, by the fundamental theorem of Calculus,

|ϕ(y)− ϕ(x)| ≤
� 1

0
|Dϕ(x+ t(y − x))| dt |y − x| ,

so, using Fubini's theorem,
�
B(x,1)

|ϕ(y)− ϕ(x)|
|x− y|n+s

dy ≤
�
B(x,1)

� 1
0 |Dϕ(x+ t(y − x))| dt

|x− y|n+s−1
dy

=

� 1

0

�
B(0,1)

|Dϕ(x+ th)|
|h|n+s−1

dh dt.

Then, continuing the inequality in (3.34), we get

|divsr ϕ(x)| ≤ C

[� 1

0

�
B(0,1)

|Dϕ(x+ th)|
|h|n+s−1

dh dt+

�
B(0,1)c

|ϕ(x− h)|
|h|n+s

dh

]
.

We now apply Hölder's inequality to obtain

|divsr ϕ(x)| ≤ C

� 1

0

(�
B(0,1)

1

|h|n+s−1
dh

) 1
q′
(�

B(0,1)

|Dϕ(x+ th)|q

|h|n+s−1
dh

) 1
q

dt

+

(�
B(0,1)c

1

|h|n+s
dh

) 1
q′
(�

B(0,1)c

|ϕ(x− h)|q

|h|n+s
dh

) 1
q


≤ C

� 1

0

(�
B(0,1)

|Dϕ(x+ th)|q

|h|n+s−1
dh

) 1
q

dt

+

(�
B(0,1)c

|ϕ(x− h)|q

|h|n+s
dh

) 1
q

 .
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Now we use the triangular inequality, Jensen's inequality, and Fubini's theo-
rem to obtain

‖divsr ϕ‖q ≤ C

(� � 1

0

�
B(0,1)

|Dϕ(x+ th)|q

|h|n+s−1
dh dt dx

) 1
q

+

(� �
B(0,1)c

|ϕ(x− h)|q

|h|n+s
dh dx

) 1
q


= C

(� 1

0

�
B(0,1)

�
|Dϕ(x+ th)|q dx
|h|n+s−1

dh dt

) 1
q

+

(�
B(0,1)c

�
|ϕ(x− h)|q dx
|h|n+s

dh

) 1
q


= C

‖Dϕ‖q
(�

B(0,1)

1

|h|n+s−1
dh

) 1
q

+ ‖ϕ‖q

(�
B(0,1)c

1

|h|n+s
dh

) 1
q

 ,
which shows (3.33).

When r ≥ 1, only part of the estimates above are needed. To be precise,
we have

|divsr ϕ(x)| ≤ C
�
B(x,r)c

|ϕ(y)|
|x− y|n+s

dy ≤ C
�
B(x,1)c

|ϕ(y)|
|x− y|n+s

dy,

and we conclude as before.

The next lemma establishes that Ds
r and divsr are dual operators in the

sense of integration by parts. The proof of the lemma is elementary, and
is actually contained within the proof of Theorem 3.1.1 (see also [84, Th.
1.4], [21, Th. 3.6]).

Lemma 3.4.3. Let p ∈ [1,∞], s ∈ (0, 1) and r > 0. Then, for any u ∈
Lp(Rn) we have Ds

ru ∈ Lp(Rn,Rn) and, for each ϕ ∈ C∞c (Rn,Rn),

�
Ds
ru(x) · ϕ(x) dx = −

�
u(x) divsr ϕ(x) dx.

Proof. De�ne

C(n, s, r) :=

�
B(0,r)c

1

|h|n+s
dh
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and note that C(n, s, r) < ∞. Therefore, given x ∈ Rn for which u(x) is
�nite, we can express

Ds
ru(x) = −cn,s

�
B(x,r)c

u(y)

|x− y|n+s

x− y
|x− y|

dy, (3.35)

so, by Hölder's inequality, if p <∞,

|Ds
ru(x)| ≤ cn,s

�
B(x,r)c

|u(y)|
|x− y|n+s

dy

≤ cn,sC(n, s, r)
1
p′

(�
B(x,r)c

|u(y)|p

|x− y|n+s
dy

) 1
p

.

Thus, by Fubini's theorem,

‖Ds
ru‖p ≤ cn,sC(n, s, r)

1
p′

(� �
B(x,r)c

|u(y)|p

|x− y|n+s
dy dx

) 1
p

= cn,sC(n, s, r) ‖u‖p .

If p =∞, we immediately have from (3.35) that ‖Ds
ru‖p ≤ cn,sC(n, s, r) ‖u‖p.

Therefore, when we de�ne Ar = {(x, y) ∈ Rn ×Rn : |x− y| ≥ r}, we have
that

�
Ds
ru(x) · ϕ(x) dx = −cn,s

�
Ar

u(y)

|x− y|n+s

x− y
|x− y|

dy · ϕ(x) dx (3.36)

and this integral is absolutely convergent. Similarly,

divsr ϕ(x) = −cn,s
�
B(x,r)c

ϕ(y)

|x− y|n+s
· x− y
|x− y|

dy

and

−
�
u(x) divsr ϕ(x) dx = cn,s

�
u(x)

�
B(x,r)c

ϕ(y)

|x− y|n+s
· x− y
|x− y|

dy dx. (3.37)

Since we can apply Fubini's theorem, it is then immediate to show that the
integrals of (3.36) and (3.37) coincide.

The next result shows that, if u ∈ H̃s,p(Rn), the a.e. convergences in
(3.32) also hold in the sense of distributions.
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Lemma 3.4.4. Let 0 < s < 1 and 1 < p <∞. Then

Ds
ru ⇀ D̃su

in the sense of distributions as r ↘ 0, for any u ∈ H̃s,p(Rn).

Proof. As a consequence of Lemma 3.4.2 and the a.e. convergence divsr ϕ →
divs ϕ as r → 0 (see (3.32)), we have that for any ϕ ∈ C∞c (Rn,Rn),

divsr ϕ ⇀ divs ϕ in Lp
′
(Rn).

Let u ∈ H̃s,p(Rn). Applying Lemma 3.4.3 and (IBP), we have that
�
Ds
ru(x) · ϕ(x) dx = −

�
u(x) divsr ϕ(x) dx

converges to

−
�
u(x) divs ϕ(x) dx =

�
D̃su(x) · ϕ(x) dx

as r ↘ 0, which concludes the proof.

A crucial fact for proving Theorem 3.4.1, non-trivial in the nonlocal con-
text, is the commutation of the fractional gradient D̃s and the convolution.
This fact is asserted in the following result for u ∈ H̃s,p(Rn). A similar result
concerning a commutation with fractional operators was independently ob-
tained in [37], in the sense of Lipchitz and Bounded variation functions, and
measures.

Lemma 3.4.5. Let ρ ∈ C∞c (Rn) be an even function. Then, for any u ∈
H̃s,p(Rn),

D̃s(ρ ∗ u) = ρ ∗ D̃su.

Proof. We �rst show that for any r > 0,

Ds
r(ρ ∗ u) = ρ ∗Ds

ru. (3.38)

Indeed, given x ∈ Rn such that u(x) is �nite, as in (3.35), we can express

Ds
ru(x) = −cn,s

�
B(x,r)c

u(y)

|x− y|n+s

x− y
|x− y|

dy = (dsr ∗ u)(x),

where dsr : Rn → Rn is the function

dsr(z) = −cn,sχB(0,r)c(z)
1

|z|n+s

z

|z|
,
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which is in L1(Rn,Rn). Since ρ ∈ L1(Rn), we have, thanks to the commu-
tativity and associativity of the convolution, as well as Young's inequality,
that

Ds
r(ρ ∗ u) = dsr ∗ (ρ ∗ u) = ρ ∗ (dsr ∗ u) = ρ ∗Ds

ru,

so (3.38) is proved.
Now, by a classical result (e.g., [32, Prop. 4.20]), ρ∗u ∈ C∞(Rn) andD(ρ∗

u) = (Dρ) ∗ u. Consequently, by Young's inequality, D(ρ ∗ u) ∈ Lp(Rn,Rn)
and, hence, ρ ∗ u ∈ W 1,p(Rn). Following the embedding into Sobolev spaces
(Proposition 3.2.2 or Proposition 3.5.11 from [22, Prop. 2.7], we have that
D̃s(ρ ∗ u) ∈ Lp(Rn,Rn); indeed, it is shown there that D̃sv(x) is well de�ned
as a Lebesgue integral for a.e. x ∈ Rn and D̃sv ∈ Lp(Rn,Rn), for any v ∈
W 1,p(Rn). Furthermore, ρ ∗ u satis�es the conditions of Theorem 3.1.1, and
therefore (IBP), hence ρ ∗ u ∈ H̃s,p(Rn). By Lemma 3.4.4,

Ds
r(ρ ∗ u) ⇀ D̃s(ρ ∗ u) (3.39)

in the sense of distributions as r → 0. Again by Lemma 3.4.4, Ds
ru ⇀ D̃su in

the sense of distributions. Now let ϕ ∈ C∞c (Rn) be an arbitrary test function.
Then, by Fubini's theorem and the fact that ρ is even one can easily show
(see, e.g., [32, Prop. 4.16]) that

�
(ρ ∗Ds

ru)(x)ϕ(x) dx =

�
(ρ ∗ ϕ)(x)Ds

ru(x) dx

and �
(ρ ∗ D̃su)(x)ϕ(x) dx =

�
(ρ ∗ ϕ)(x)D̃su(x) dx.

Consequently, as ρ ∗ ϕ ∈ C∞c (Rn), we have that
�

(ρ ∗Ds
ru)(x)ϕ(x) dx =

�
(ρ ∗ ϕ)(x)Ds

ru(x) dx

converges to
�

(ρ ∗ ϕ)(x)D̃su(x) =

�
(ρ ∗ D̃su)(x)ϕ(x) dx

as r → 0. This shows that

ρ ∗Ds
ru ⇀ ρ ∗ D̃su (3.40)

in the sense of distributions as r → 0. Comparing (3.38), (3.39) and (3.40)
we conclude that D̃s(ρ ∗ u) = ρ ∗ D̃su as distributions; since both are Lp

functions, the equality also holds a.e. Thus, the lemma is proved.
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Notice that last results is veri�ed, in particular, by functions u ∈ C∞c (Rn)
for which it is known that D̃su = Du. Thus, it can be extended by density
so as to obtain the following corollary.

Corollary 3.4.6. Let ρ ∈ C∞c (Rn) be an even function. Then, for any
u ∈ Hs,p(Rn),

Ds(ρ ∗ u) = ρ ∗Dsu.

We are in a position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Let us take a standard mollifying sequence {ρk}k∈N,
so that ρk ∈ C∞c (Rn) is radial, supp ρk ⊂ B(0, 1

k ), ρk ≥ 0 and
�
ρk = 1. Fix

a cut-o� function h ∈ C∞c (Rn) such that 0 ≤ h ≤ 1 with h = 1 in B(0, 1) and
h = 0 in B(0, 2)c. Consider also the cut-o� sequence hk(x) = h(xk ) for k ∈ N.

Let u ∈ H̃s,p(Rn). For each k ∈ N, de�ne uk = ρk ∗ u and vk = hk uk.
Then uk ∈ C∞(Rn) and vk ∈ C∞c (Rn). The proof will be completed as soon
as we show that vk converges to u in the ‖·‖Hs,p norm. Convergence in Lp is
elementary since

vk − u = hk (uk − u) + (hk u− u)

and, hence,
‖vk − u‖p ≤ ‖uk − u‖p + ‖hku− u‖p → 0 (3.41)

as k →∞ (see, e.g., [32, Th. 4.22]).
For the convergence of the sequence of fractional gradients, by Lemma

3.3.4, we have that

D̃svk = Khk(uk) + hk D̃
suk a.e.,

where the operator K is as in Lemma 3.3.2. This provides us with the bound

‖D̃svk − D̃su‖p ≤ ‖Khk(uk)‖p + ‖hk D̃suk − D̃su‖p.

Recalling from Lemma 3.4.5 that D̃suk = ρk ∗ D̃su, the second term in the
right hand side of the inequality converges to zero as k → ∞ by the same
argument from (3.41). As for the �rst term, by Lemma 3.3.2,

‖Khk(uk)‖p ≤ C
(

[hk]C0,α(Rn) + [hk]C0,1(Rn)

)
‖uk‖p .

Now, by Young's inequality, ‖uk‖p ≤ ‖u‖p for all k ∈ N, while

[hk]C0,α(Rn) =
1

kα
[h]C0,α(Rn) and [hk]C0,1(Rn) =

1

k
[h]C0,1(Rn)

for all k ∈ N. Therefore, ‖Khk(uk)‖p → 0 and, hence, ‖D̃svk − D̃su‖p → 0 as
k →∞, ending the proof.
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In the second part of this section we show the following density result,
of interest for applications in fractional variational problems and fractional
partial di�erential equations, where complementary conditions on a given
bounded domain are imposed on the admissible functions. We will use the fol-
lowing density result for functions in the Gagliardo fractional spacesW s,p(Rn),
which was given in [31, Prop. B.1].

Proposition 3.4.7. Let 1 < p < ∞ and s ∈ (0, 1). Let Ω ⊂ Rn an open,
bounded set with a Lipschitz boundary. Then, the space of smooth functions
compactly supported in Ω is dense (with respect to the norm ‖·‖W s,p) in the
subspace

W s,p
0 (Ω) := {u ∈W s,p(Rn) : u = 0 in Ωc} .

Notice that now we come back to consider the space Hs,p(Rn).

Theorem 3.4.8. Let Ω ⊂ Rn be an open, bounded set with a Lipschitz bound-
ary, 0 < s < 1 and 1 < p <∞. Then

Hs,p
0 (Ω) = C∞c (Ω)

‖·‖Hs,p ,

where

Hs,p
0 (Ω) = {u ∈ Hs,p(Rn) : u = 0 in Ωc} .

Of course, any function in C∞c (Ω) is also considered as a function in
C∞c (Rn) by extension by zero in Ωc. The proof of this result relies on two key
ingredients. First, the density in Hs,p

0 (Ω) of smooth functions supported in
Ω, which we show following the classical proof for Sobolev functions. Second,
the fact that C∞c (Ω) is dense in {u ∈W s,p(Rn) : u = 0 in Ωc} (see Proposition
3.4.7), which has been proved in [31, Prop. B.1].

Proof of Theorem 3.4.8. It is clear that C∞c (Ω) ⊂ Hs,p
0 (Ω) and that Hs,p

0 (Ω)
is closed in the Hs,p norm. Therefore, it su�ces to prove the inclusion

Hs,p
0 (Ω) ⊂ C∞c (Ω)

‖·‖Hs,p . This is done in two steps.

Step 1. We show that given u ∈ Hs,p(Rn) with u = 0 in Ωc and ε > 0,
there exists ṽ ∈ C∞(Rn) with ṽ = 0 in Ωc such that ‖u − ṽ‖Hs,p ≤ ε

2 . The
proof of this step follows the line of the analogous result for Sobolev functions,
as for instance in [56, Th. 2, Sect. 5.3.2].

We start by de�ning

Ei := {x ∈ Ω: dist(x, ∂Ω) >
1

i
}, i ∈ N.
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Then {Ei}i≥1 is an increasing sequence of open subsets such that Ω =
⋃∞
i=1Ei.

Let us choose F0 ⊂⊂ Ω and set Fi = Ei+3 \ Ēi (i ≥ 1). Then

Ω =
∞⋃
i=0

Fi,

so we have expressed Ω as a countable union of open sets compactly contained
in Ω. Moreover, that union is locally �nite. Now, let {ϕi}i∈N be a smooth
partition of unity subordinate to the family of open sets {Fi}i∈N, that is,{

0 ≤ ϕi ≤ 1, ϕi ∈ C∞c (Fi), for all i ∈ N,∑∞
i=0 ϕ = 1 in Ω.

For each i ≥ 0, we have that supp(ϕiu) ⊂ Fi. By Lemma 3.3.6, ϕiu ∈
Hs,p(Rn).

Let η be a standard molli�er: η ∈ C∞c (Rn) is even, η ≥ 0, supp η ⊂ B(0, 1)
and

�
η = 1. Then we de�ne the mollifying family

ηδ(x) =
1

δn
η
(x
δ

)
, x ∈ Rn.

As a consequence of Corollary 3.4.6 and a standard result for convolutions
(see, e.g., [32, Th. 4.22]), there exists δi > 0 such that the function ui :=
ηδi ∗ (ϕiu) satis�es

‖ui − ϕiu‖p ≤
ε

2i+3
, ‖Dsui −Ds(ϕiu)‖p ≤

ε

2i+3
, suppui ⊂ Ai (3.42)

where Ai = Ei+4 \ Ēi−1 for i ≥ 1, and a suitable open set A0 with F0 ⊂⊂
A0 ⊂⊂ Ω.

We consider now the function ṽ : Rn → R de�ned as

ṽ(x) :=

∞∑
i=0

ui(x).

Clearly ṽ ∈ C∞(Rn), as the family {Ai}i≥0 is locally �nite. Furthermore,
ṽ(x) = 0 for all x ∈ Ωc.

Since u = 0 in Ωc we can write u =
∑∞

i=0 ϕiu, and using (3.42), we �nd
that

‖Dsu−Dsṽ‖p =

∥∥∥∥∥
∞∑
i=0

Ds(ϕiu)−
∞∑
i=0

Dsui

∥∥∥∥∥
p

≤
∞∑
i=0

‖Ds(ϕiu)−Dsui‖p

≤
∞∑
i=0

ε

2i+3
=
ε

4
.
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The conclusion ‖u− ṽ‖p ≤ ε
4 follows from a similar argument. Therefore,

‖u− ṽ‖Hs,p ≤ ε

2
.

Step 2. For the function ṽ ∈ C∞(Rn), with ṽ = 0 in Ωc, constructed in the
previous step, we claim that there exists v ∈ C∞c (Ω) such that ‖v−ṽ‖Hs,p ≤ ε

2 ,
and, consequently,

‖u− v‖Hs,p ≤ ‖u− ṽ‖Hs,p + ‖ṽ − v‖Hs,p ≤ ε

2
+
ε

2
= ε,

and then we would be done.
In order to show the previous claim we �rst notice that, since ṽ is smooth

with bounded support, ṽ ∈ W t,p(Rn) for any t ∈ (0, 1). Furthermore,
W t,p(Rn) continuously embeds into Hs,p(Rn) whenever t > s (see Propo-
sition 3.2.2 ), and therefore there exists a constant C = C(s, t, p) > 0 such
that

‖w‖Hs,p ≤ C‖w‖W t,p , for all w ∈W t,p(Rn).

Now, having in mind that ṽ = 0 in Ωc, by Proposition 3.4.7, there exists
v ∈ C∞c (Ω) such that

‖v − ṽ‖W t,p ≤ ε

2C
,

so
‖v − ṽ‖Hs,p ≤ ε

2
.

Remark 3.4.2. The hypothesis of Ω with a Lipschitz boundary comes from
[31, Prop. B.1]. However, it remains as an open problem the fact that such
hypothesis could be weakened to sets with non-Lipschitz boundaries, in partic-
ular, those sets whose boundary is ᾱ-Hölder continuous with ᾱ ≥ s.

3.5 Embeddings of Bessel spaces

Essential tools for obtaining existence of minimizers for variational function-
als and other applications are continuous and compact embeddings, such as
Sobolev-Poincaré and Morrey type inequalities or Rellich-Kondrachov theo-
rem. The main framework in Hs,p(Rn) was provided by references [99, 100].
We will state such results given therein, in particular, fractional versions of
Sobolev, Hardy, Trudinger and Morrey's inequalities together with a frac-
tional compactness result for which we provide an alternative proof based
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on Frêchet-Kolmogorov theorem (instead of Arcoli-Aszelá theorem as in [100,
Theorem 2.2]). To do so we also provide a sort of fractional mean value
theorem and some additional proofs as the one for the fractional Poincaré's
inequality in order to have inequality constants independent of s.

A crucial fact is the following fractional fundamental theorem of Calculus
[38, Th. 3.11] (see also [99, Th. 1.12] or [92, Prop. 15.8]).

Theorem 3.5.1. Let 0 < s < 1. For every u ∈ C∞c (Rn) and every x ∈ Rn
we have that

u(x) = cn,−s

�
Dsu(y) · x− y

|x− y|n−s+1
dy.

Last result is the fractional counterpart of the following classical repre-
sentation theorem which can be seen in [63, Lemma 7.14] or [92, Prop. 4.14].

Proposition 3.5.2. For every u ∈ C∞c (Rn) and every x ∈ Rn, we have

u(x) =
1

σn

�
Rn
Du(y) · x− y

|x− y|n
dy,

where σn is the area of the unit sphere.

3.5.1 Continuous embeddings

With such tool (Theorem 3.5.1) Shieh and Spector [99, 100] obtained the
aforementioned relevant inequalities. In the following, we denote p∗s := np

n−sp .
We begin with the statement of a Fractional Sobolev inequality proved in [99,
Theorem 1.8] for the case sp < n.

Theorem 3.5.3. Let 0 < s < 1 and 1 < p < ∞ such that sp < n. Then,
there exists a constant C = C(n, p, s) > 0 such that for every u ∈ Hs,p(Rn)

‖u‖Lp∗s (Rn) ≤ C‖D
su‖Lp(Rn).

Corollary 3.5.4. Let 0 < s < 1, 1 < p <∞ and u ∈ Hs,p(Rn). If Dsu = 0
on Rn, then u = 0 on Rn.

For the same case, sp < n, they also provide a Fractional Hardy inequality
(see [99, Theorem 1.9]).

Theorem 3.5.5. Let 0 < s < 1 and 1 < p < ∞ such that sp < n. Then,
there exists a constant C = C(n, p, s) > 0 such that for every u ∈ Hs,p(Rn)

�
Rn

|u(x)|p

|x|sp
dx ≤ C

�
Rn
|Dsu(x)|p dx.
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Following with the critical case, [99, Theorem 1.10] also provided a Frac-
tional Trudinger inequality.

Theorem 3.5.6. Let 0 < s < 1 and 1 < p < ∞ such that sp = n. Then,
there exist constants A1, A2, C > 0 such that for every u ∈ Hs,p(Rn) and
Ω ⊂ Rn open with �nite measure

�
Rn

exp

[
|u(x)|

A1C‖Dsu‖Lp(Rn)

]p′
dx ≤ A2.

Finally, for the remaining case, there is also a Fractional Morrey inequality
in [99, Theorem. 1.11]. Notice that from this result it can be obtained the
fact that Hs,p(Rn) ⊂ C0,µ(Rn) with 0 < µ ≤ s − n

p , stated in Proposition
3.2.2.

Theorem 3.5.7. Let 0 < s < 1 and 1 < p < ∞ such that sp > n. Then,
there exists a constant C = C(n, p, s) > 0 such that for every u ∈ Hs,p(Rn)

|u(x)− u(y)| ≤ C|x− y|s−
n
p ‖Dsu‖Lp(Rn).

Putting together all this results the following embedding theorem can
be written, from which, in particular, can be obtained a fractional Poincaré
inequality.

Theorem 3.5.8. Set 0 < s < 1 and 1 < p < ∞. Let Ω ⊂ Rn be a bounded
open set. Then there exists C = C(|Ω|, n, p, s) > 0 such that

‖u‖Lq(Ω) ≤ C‖Dsu‖Lp(Rn)

for all u ∈ Hs,p(Rn), and any q satisfying
q ∈ [1, p∗s] if sp < n,

q ∈ [1,∞) if sp = n,

q ∈ [1,∞] if sp > n.

Proof. The case sp < n is an immediate consequence of Theorem 3.5.3 ( [99,
Th. 1.8]), where the continuous embedding of Hs,p(Rn) in Lp

∗
s (Rn) is shown.

Case sp = n is a consequence of Theorem 3.5.6 ( [99, Th. 1.10]), where it
is proved in this context the version of Trudinger's inequality, which implies
the embedding of Hs,p(Rn) in Lqloc(R

n) for all q ∈ [1,∞). Finally, the case
sp > n is a consequence of Proposition 3.2.2 d).
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It is interesting to trace the dependence of the embedding constant on s.
Thus, we provide an additional proof of the fractional Poincaré inequality for
functions in Hs,p

0 (Ω), which uses some ideas of [63, Lemma 7.12], and that
will be applied in Chapter 5. Notice that such constant does not depend on
p either.

Theorem 3.5.9. Let Ω ⊂ Rn be open and bounded with a Lipschitz boundary.
Then there exists C = C(n,Ω) such that for all 0 < s < 1, 1 < p < ∞ and
u ∈ Hs,p

0 (Ω),

‖u‖Lp(Ω) ≤
C

s
‖Dsu‖Lp(Rn) .

Proof. By density, it is enough to prove the inequality for u ∈ C∞c (Ω). Let
R ∈ R, to be speci�ed later, such that

R ≥ 1, Ω ⊂ B(0, R). (3.43)

De�ne Ω1 := B(0, 2R).
Fix x ∈ Ω. By Theorem 3.5.1 and Lemma 3.1.9,

|u(x)| ≤ C(n)

[�
Ω1

|Dsu(y)|
|x− y|n−s

dy +

�
Ωc1

|Dsu(y)|
|x− y|n−s

dy

]
. (3.44)

Now Ω1 ⊂ B(x, 3R), so�
Ω1

1

|x− y|n−s
dy ≤

�
B(x,3R)

1

|x− y|n−s
dy =

σn−1

s
(3R)s ≤ C(n)

1

s
R.

(3.45)
Similarly, Ω ⊂ B(y, 3R) for every y ∈ Ω1, so�

Ω

1

|x− y|n−s
dx ≤ C(n)

1

s
R. (3.46)

By (3.45) and Hölder's inequality,

�
Ω1

|Dsu(y)|
|x− y|n−s

dy ≤
[
C(n)

1

s
R

] 1
p′
(�

Ω1

|Dsu(y)|p

|x− y|n−s
dy

) 1
p

.

Therefore, using (3.46), we �nd[�
Ω

(�
Ω1

|Dsu(y)|
|x− y|n−s

dy

)p
dx

] 1
p

≤[
C(n)

1

s
R

] 1
p′
(�

Ω1

|Dsu(y)|p
�

Ω

1

|x− y|n−s
dx dy

) 1
p

≤ C(n)
1

s
R ‖Dsu‖p .

(3.47)
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Now, for any y ∈ Ωc
1, by Lemma 3.1.9,

|Dsu(y)| ≤ C(n)

�
|u(y)− u(z)|
|y − z|n+s dz = C(n)

�
Ω

|u(z)|
|y − z|n+s dz. (3.48)

When z ∈ Ω we have

|y| ≤ |y − z|+ |z| ≤ |y − z|+R ≤ |y − z|+ 1

2
|y|,

so 1
2 |y| ≤ |y − z| and, hence,

1

|y − z|n+s
≤
(

2

|y|

)n+s

≤ C(n)
1

|y|n+s
. (3.49)

Similarly, for each x ∈ Ω we have

1

|x− y|n−s
≤ C(n)

1

|y|n−s
. (3.50)

Using (3.49) we �nd that

�
Ω

|u(z)|
|y − z|n+s dz ≤ C(n)

1

|y|n+s
‖u‖L1(Ω) ≤ C(n)|Ω|

1
p′

1

|y|n+s
‖u‖Lp(Ω) ,

whence we infer from (3.48) that

|Dsu(y)| ≤ C(n)|Ω|
1
p′

1

|y|n+s
‖u‖Lp(Ω) . (3.51)

Thus, using (3.50) as well,

�
Ωc1

|Dsu(y)|
|x− y|n−s

dy ≤ C(n)|Ω|
1
p′ ‖u‖Lp(Ω)

�
Ωc1

1

|y|n+s

1

|y|n−s
dy

= C(n)|Ω|
1
p′R−n ‖u‖Lp(Ω) .

This last inequality, combined with (3.44) and (3.47), implies by the triangular
inequality that

‖u‖Lp(Ω) ≤ C(n)
1

s
R ‖Dsu‖p + C1(n)|Ω|

2
p′R−n ‖u‖Lp(Ω)

≤ C(n)
1

s
R ‖Dsu‖p + C1(n) max{1, |Ω|2}R−n ‖u‖Lp(Ω) .
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Finally, we choose R such that, in addition to (3.43), satis�es

C1(n) max{1, |Ω|2}R−n ≤ 1

2
,

, so that R depends on n and Ω. We obtain that

1

2
‖u‖Lp(Ω) ≤ C(n)

1

s
R ‖Dsu‖Lp(Rn)

and concludes the proof.

We will use the following immediate consequence of Theorem 3.5.9.

Corollary 3.5.10. Let Ω ⊂ Rn be open and bounded, and let 0 < s0 < 1.
Then there exists C = C(n,Ω, s0) such that for all s0 < s < 1, 1 < p < ∞
and u ∈ Hs,p

0 (Ω),

‖u‖Lp(Ω) ≤ C ‖D
su‖p .

Following this spirit we also add the continuous embedding of W 1,p(Rn)
into Hs,p(Rn) which is already known (see [2, Ch. 7]). Nevertheless, in the
next result, we prove it again in order to give an explicit dependence of the
embedding constant with respect to s.

Proposition 3.5.11. Let 1 ≤ p < ∞. Then, there exists a constant C =
C(n, p) > 0 such that for all u ∈W 1,p(Rn) and 0 < s < 1,

‖Dsu‖p ≤
C

s
‖u‖W 1,p(Rn),

Proof. By density, it is enough to prove the inequality for u ∈ C∞c (Rn). For
all x ∈ Rn,

|Dsu(x)| ≤ cn,s (A(x) +B(x)) (3.52)

with

A(x) :=

�
B(x,1)

|u(x)− u(y)|
|x− y|n+s

dy, B(x) :=

�
B(x,1)c

|u(x)− u(y)|
|x− y|n+s

dy,

so
‖Dsu‖p ≤ cn,s

(
‖A‖p + ‖B‖p

)
.

Note that

A(x) =

�
B(0,1)

|u(x+ h)− u(x)|
|h|n+s

dh, B(x) =

�
B(0,1)c

|u(x+ h)− u(x)|
|h|n+s

dh.
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Applying Minkowski's integral inequality (see, e.g., [110, App. A.1]) we obtain

‖A‖p ≤
�
B(0,1)

(�
|u(x+ h)− u(x)|p

|h|(n+s)p
dx

) 1
p

dh.

Now, for all h ∈ B(0, 1) \ {0},(�
|u(x+ h)− u(x)|p

|h|(n+s)p
dx

) 1
p

=
1

|h|n+s

(�
|u(x+ h)− u(x)|p dx

) 1
p

≤ 1

|h|n+s−1
‖Du‖p ,

thanks to a classic inequality (see, e.g., [32, Prop. 9.3] and notice that it is
still valid for p = 1). Therefore,

‖A‖p ≤ ‖Du‖p
�
B(0,1)

1

|h|n+s−1
=
σn−1

1− s
‖Du‖p , (3.53)

where σn−1 is the area of the unit sphere of Rn.
As for B, we �rst notice that for all x ∈ Rn, by Hölder's inequality

B(x) ≤
�
B(0,1)c

|u(x+ h)|
|h|n+s

dh+

�
B(0,1)c

|u(x)|
|h|n+s

dh

≤

(�
B(0,1)c

|u(x+ h)|p

|h|n+s
dh

) 1
p
(�

B(0,1)c

1

|h|n+s
dh

) 1
p′

+ |u(x)|
�
B(0,1)c

1

|h|n+s
dh

=

(�
B(0,1)c

|u(x+ h)|p

|h|n+s
dh

) 1
p (σn−1

s

) 1
p′

+ |u(x)| σn−1

s
,

so, by Fubini's theorem,

‖B‖p ≤
(σn−1

s

) 1
p′

(� �
B(0,1)c

|u(x+ h)|p

|h|n+s
dh dx

) 1
p

+
σn−1

s
‖u‖p

= 2
σn−1

s
‖u‖p .

(3.54)

Putting together (3.52), (3.53) and (3.54), we obtain

‖Dsu‖p ≤ cn,sσn−1

(
1

1− s
‖Du‖p +

2

s
‖u‖p

)
and, thanks to Lemma 3.1.9, the proof is �nished.
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3.5.2 Fractional mean value theorem and compact embed-

dings

In this subsection we provide an alternative proof of the compactness theorem
(based on Frêchet-Kolmogorov theorem instead of Arcoli-Aszelá theorem as
in [100]). So as to do so we also obtain a sort of fractional mean value theorem
which was lacking in the literature for p > 1 (case p = 1 was already proved
in [37, Proposition 3.13]). First, we introduce the following technical lemma.

Lemma 3.5.12. There exists a constant C > 0, such that for every s ∈ (0, 1)
we have � ∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ dw ≤ C

s(1− s)
.

where e1 is the �rst vector of the canonical basis of Rn.

Proof. On the one hand, we have that
�
B(0,2)

∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ dw ≤ C �
B(0,2)

1

|w|n−s
dw ≤ C 2s

s
≤ C

s
.

On the other hand, for a �xed w ∈ B(0, 2)c,∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ =

∣∣∣∣� 1

0

d

dt

w − te1

|w − te1|n+1−sdt

∣∣∣∣ =∣∣∣∣� 1

0
(n+ 1− s) [(w − te1) · e1](w − te1)

|w − te1|n+3−s − e1

|w − te1|n+1−sdt

∣∣∣∣ ≤
C

� 1

0

1

|w − te1|n+1−sdt.

Now, for w ∈ B(0, 2)c and t ∈ [0, 1] we have

|w − te1| ≥ |w| − t ≥ |w| − 1 ≥ 1

2
|w|,

so � 1

0

1

|w − te1|n+1−sdt ≤ 2n+1−s 1

|w|n+1−s ≤ 2n+1 1

|w|n+1−s .

By integration, we obtain that
�
B(0,2)c

∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ dw ≤ C �
B(0,2)c

1

|w|n+1−sdw ≤ C
2−1+s

1− s

≤ C

1− s
.

This yields the result.
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As it was aforementioned, next result could be considered as a sort of
fractional mean value theorem. We prove it for the general case 1 ≤ p <∞.
Actually, it is the fractional version of [32, Proposition 9.3. (iii)].

Proposition 3.5.13. Let 0 < s < 1, 1 ≤ p < ∞ and u ∈ Hs,p(Rn). Then
there exists C > 0, independent of s, such that

(�
|u(x+ h)− u(x)|pdx

) 1
p

≤ C

s(1− s)
|h|s‖Dsu‖Lp(Rn),

for every h ∈ Rn.

Proof. By a standard density argument, it is enough to prove the result for
u ∈ C∞c (Rn). Let us �x h ∈ Rn. By Theorem 3.5.1,

|u(x+ h)− u(x)| = |cn,−s|
∣∣∣∣� (

z

|z|n+1−s −
z − h

|z − h|n+1−s

)
·Dsu(x+ z)dz

∣∣∣∣
≤ |cn,−s|

� ∣∣∣∣ z

|z|n+1−s −
z − h

|z − h|n+1−s

∣∣∣∣ |Dsu(x+ z)|dz.

(3.55)

Let us take R ∈ SO(n) (the set of proper rotations in Rn) such that RTh =
|h|e1, where e1 is the �rst vector of the canonical basis. Then, making the
change of variables z = |h|Rw, applying Hölder's inequality and using Lemma
3.5.12, we arrive at

� ∣∣∣∣ z

|z|n+1−s −
z − h

|z − h|n+1−s

∣∣∣∣ |Dsu(x+ z)|dz

=|h|s
� ∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ |Dsu(x+ |h|Rw)|dw

≤|h|s
(

C

s(1− s)

) 1
p′
(� ∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ |Dsu(x+ |h|Rw)|pdw
) 1
p

.

Now, we raise to the p in (3.55), use the previous estimate, integrate, use
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Fubini's theorem and apply Lemmas 3.5.12 and 3.1.9 to obtain
�
|u(x+ h)− u(x)|pdx

≤ |cn,−s|p|h|sp
(

C

s(1− s)

) p
p′

·
� ∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ � |Dsu(x+ |h|Rw)|p dxdw

= |cn,−s|p|h|sp
(

C

s(1− s)

) p
p′

‖Dsu‖pLp(Rn)

� ∣∣∣∣ w

|w|n+1−s −
w − e1

|w − e1|n+1−s

∣∣∣∣ dw
≤ |cn,−s|p|h|sp

(
C

s(1− s)

)p
‖Dsu‖pLp(Rn),

≤ |h|sp
(

C

s(1− s)

)p
‖Dsu‖pLp(Rn),

as desired.

Next is the compact embedding of Hs,p
g (Ω) into Lq(Rn) (notice that in

[100, Th. 2.2] it was not known yet the density result Hs,p
0 (Ω) = C∞c (Ω)

‖·‖Hs,p

; the formulation is adapted from [22, Th. 2.3]). In what follows we recall
that p∗s = pn

n−sp , and ⇀ denotes weak convergence.

Theorem 3.5.14. Set 0 < s < 1 and 1 < p < ∞. Let Ω ⊂ Rn be open and
bounded and g ∈ Hs,p(Rn). Then for any sequence {uj}j∈N ⊂ Hs,p

g (Ω) such
that

uj ⇀ u in Hs,p(Rn),

for some u ∈ Hs,p(Rn), one has u ∈ Hs,p
g (Ω) and

a) uj − g → u− g in Lq(Rn) for every q satisfying
q ∈ [1, p∗s) if sp < n,

q ∈ [1,∞) if sp = n,

q ∈ [1,∞] if sp > n,

b) uj → u in Lq(Rn) for every q satisfying
q ∈ [p, p∗s) if sp < n,

q ∈ [p,∞) if sp = n,

q ∈ [p,∞] if sp > n.
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Proof. Here we will focus on proving the case sp < n using Fréchet-Kolmogorov
theorem. Case sp = n follows from the former having in mind Proposition
3.2.2, part c) or else, part f). Finally, the case sp > n is a consequence of
Proposition 3.2.2 d) and the compact embedding of C0,µ(Ω̄) into C(Ω̄).

Thus, let sp < n. So as to prove a) we assume without loss of generality
that g = 0. Then, since {uj}j∈N is a weakly converging sequence in Hs,p(Ω)
there exists C > 0 such that ‖uj‖Hs,p(Rn) < C for every j ∈ N. We have
to check that, in order to apply Fréchet-Kolmogorov theorem [32, Theorem
4.26],

lim
|h|→0

‖τhuj − uj‖Lq(Rn) = 0 uniformly in j ∈ N, (3.56)

where τhuj(·) = uj(· − h). By Proposition 3.5.13 we have that there exists
C > 0 such that

‖τhuj − uj‖Lp(Rn) ≤
C

s(1− s)
|h|s‖Dsuj‖Lp(Rn). (3.57)

Next, considering p ≤ q < p∗s, we can write

1

q
=
α

p
+

1− α
p∗s

for some α ∈ (0, 1].

Let C̃ denote a constant whose value may vary through the di�erent steps,
using the interpolation inequality, (3.57) and triangular inequality we obtain

‖τhuj − uj‖Lq(Rn) ≤ ‖τhuj − uj‖αLp(Rn)‖τhuj − uj‖
1−α
Lp
∗
s (Rn)

≤
(

C

s(1− s)
|h|s
)α
‖Dsuj‖αLp(Rn)

(
2‖uj‖Lp∗s (Rn)

)1−α

≤ C̃|h|sα‖Dsuj‖Lp(Rn) ≤MC̃|h|sα

where we have used Theorem 3.5.9 and the fact that ‖uj‖Hs,p(Rn) < C. Thus,
(3.56) holds. As a result, Fréchet-Kolmogorov theorem leads to the compact
embedding. Notice that since uj are assumed to have compact support in
Ω, there exists C̄ > 0 such that ‖τhuj − uj‖Lr(Rn) ≤ C̄‖τhuj − uj‖Lq(Rn) for
every r ∈ [1, q]. This proves a). On the other hand, b) is obtained when
g ∈ Hs,p(Rn) does not have compact support.

3.6 Examples of functions in Hs,p(Rn)

One of the motivations of this study is to propose an existence theory for
variational principles on nonlinear fractional PDE formulated in spaces wider
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than classical Sobolev spaces. As a consequence of Proposition 3.2.2 f), classi-
cal Sobolev spaces are continuously embedded in Hs,p spaces. Further, we are
interested in functions that belong to Hs,p but not toW 1,p. Necessarily, those
functions must exhibit some type of singularity. We focus on two important
singularities in solid mechanics: discontinuities along hypersurfaces and at a
single point. The later corresponds with the paradigmatic case of cavitation.
For simplicity, we study as a model for singularities along hypersurfaces a
function whose �rst component is the characteristic function χQ of the unit
cube Q, while the other components are C∞c functions. As a model for sin-
gularity at a point, we study a radial function of compact support exhibiting
one cavity at the origin. In both examples the functions have compact sup-
port: this simpli�es the analysis since it avoids the issue of the integrability
at in�nity, and, hence, allows us to focus solely on the singularity.

We start with the case of singularity along a hypersurface. There is an
extensive literature on when the characteristic function of a set (especially,
of an open bounded Lipschitz set) belongs to a functional space of fractional
regularity (see, e.g., [58, 79, 97, 101, 111]). We exploit those results to give a
quick proof of the following lemma.

Lemma 3.6.1. Set 0 < s < 1 and 1 < p < ∞. Let Q = (0, 1)n and
ϕ2, . . . , ϕn ∈ C∞c (Rn). De�ne u = (χQ, ϕ2, . . . , ϕn). Then

u ∈ Hs,p(Rn,Rn) if p <
1

s
, and u /∈ Hs,p(Rn,Rn) if p >

1

s
.

Proof. As C∞c (Rn) ⊂ Hs,p(Rn) (we will show this in Lemma 3.3.1), we have
that u ∈ Hs,p(Rn,Rn) if and only if χQ ∈ Hs,p(Rn).

The fractional Sobolev space W s,p coincides with the Triebel�Lizorkin
space F sp,p and with the Besov space Bs

p,p (see, e.g., [111, Sect. 2.3.5] or [97,
Prop. 2.1.2]). This result together with [97, Lemma 4.6.3.2] shows that χQ ∈
W s,p if and only if sp < 1. Proposition 3.2.2 f) concludes the proof.

For the case of cavitation, the result is the following.

Lemma 3.6.2. Set 0 < s < 1 and 1 < p < ∞. Let ϕ ∈ C∞c ([0,∞)) be such
that ϕ(0) > 0, and u(x) = x

|x|ϕ(|x|). Then

u ∈ Hs,p(Rn,Rn) if p <
n

s
, and u /∈ Hs,p(Rn,Rn) if p >

n

s
.

Proof. It is well known that u ∈ W 1,q(Rn,Rn) whenever 1 < q < n (see,
e.g., [11, Lemma 4.1]), and therefore u ∈ Ht,q(Rn,Rn) for any 0 < t < 1 and
1 < q < n. Applying now Proposition 3.2.2 c), we have that u ∈ Hs,p(Rn,Rn)
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for any s ∈ (0, t) and p ∈ [q, nq
n−(t−s)q ]. Now we observe that the set of

(s, p) ∈ R2 such that there exist q ∈ (1, n) and t ∈ (0, 1) for which s ∈ (0, t)
and p ∈ [q, nq

n−(t−s)q ] is precisely the set of (s, p) such that s ∈ (0, 1) and
p ∈ (1, ns ). Therefore, u ∈ Hs,p(Rn,Rn) if p < n

s .
On the other hand, when p > n

s , by Proposition 3.2.2 d), Hs,p(Rn,Rn)
functions are continuous. Since u is discontinuous, u /∈ Hs,p(Rn,Rn) if p >
n
s .
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Chapter 4.

Existence of minimizers of

vector fractional functionals

under polyconvexity

In this investigation we deepen in the existence issue for vector variational
problems involving the s-fractional gradient, as well as the PDE derived from
those as equilibrium conditions. In particular, this chapter focuses on the re-
sults obtained in [21]. Thus, we consider the more di�cult vectorial case under
conditions weaker than convexity. To be precise, we establish the existence
of minimizers in Hs,p under the polyconvexity assumption of the integrand.
A key ingredient in this process is the fractional Piola identity

Divs cof Dsu = 0

(where Divs means the s-divergence by rows). We believe that the fractional
Piola identity is a result of interest in itself. On the one hand, it may serve
to show analogous versions in the fractional or nonlocal situations of classical
results in whose proof the Piola identity is invoked, as for instance, the change
of variables formula for surface integrals. On the other hand, it may also be
useful in other fractional or nonlocal models in di�erent contexts, such as
�uid mechanics [50]. Furthermore, an extension to a nonlocal Piola identity
for nonlocal gradients de�ned on bounded domains is easy from the proof we
provide here in the fractional framework.

The goal of this chapter is to prove the existence of minimizers of frac-
tional vector functionals, following a process inspired by that of J. Ball's in
classical hyperelasticity [10]. In other words, based on the direct method of
Calculus of Variations, we need to check the coercivity (given by growing
conditions and compact embedding results) and the lower semi-continuity
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properties. With respect to the later, convexity might be a too strict con-
dition in hyperlelasticity, so the proper notion in this framework used by J.
Ball was polyconvexity (see, e.g, [10,39]).

De�nition 4.0.1. Let τ be the number of submatrices of an n×n matrix. We
�x a function ~µ : Rn×n → Rτ such that ~µ(F ) is the collection of all minors
of an F ∈ Rn×n in a given order. A function W0 : Rn×n → R ∪ {∞} is
polyconvex if there exists a convex Φ : Rτ → R ∪ {∞} such that

W0(F ) = Φ(~µ(F ))

for all F ∈ Rn×n.

Polyconvexity is a central notion in Calculus of Variations, with essential
implications in the existence and stability of solutions in solid mechanics, and
particularly in elasticity [10,39] . In order to obtain our results, we follow the
usual steps as for classical polyconvex variational problems, namely, we show
that the determinant (or any minor) of the fractional gradient matrix Dsu is
continuous with respect to weak convergence in Hs,p.

Thus, the scheme in the classical case was the following. Assuming poly-
convexity and proving the weak convergence of the determinant of the gradi-
ent would provide the weak lower semi-continuity of the functional. In such
process, for a function u ∈ C2(Rn) the Piola Identity

Div cof Du = 0

is a key ingredient (easily proved in the classical case through the Schwartz
Theorem of the symmetry of second derivatives), since it allows the determi-
nant of the gradient to be written as a divergence,

detDu = div(u(cof Du)).

This property is useful as it allows us to use integration by parts, and thus it
provides an option to study the weak convergence (for which it is also neces-
sary the compactness given by Rellich-Kondrachov theorem). In particular,
for {uj}j∈N a weakly converging sequence in W 1,p, 1 < p <∞, we have

�
det(Duj)ϕ = − 1

n

�
uj ·Dϕ cof Duj .

Now, the weak convergence of det(Duj) is a consequence of the weak con-
vergence obtained for cof Duj through an induction process and the strong
convergence in Lp of uj (Rellich-Kondrachov theorem).
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This is the scheme we would like to follow in the fractional framework.
However some di�culties arise, as the fractional version of the Leibniz formula
Lemma 3.3.6 which makes it more di�cult to prove a fractional version of the
Piola Identity or would a�ect the integration by part of the determinant of
the fractional gradient.

4.1 Fractional Piola Identity

In this section we introduce a fractional version of the Piola Identity. This
is the main step in order to prove the existence of solutions for our frac-
tional energy, since it will allow us to prove the weak continuity in Hs,p of
the determinant of the s-fractional gradient. Recall that the classical Piola
identity asserts that, for smooth enough functions u : Ω ⊂ Rn → Rn one has
Div cof Du = 0. Of course, cof denotes the cofactor matrix, which satis�es
cof AAT = (detA) I for every A ∈ Rn×n.

Contrary to the classical case, the proof of the fractional Piola identity
is not trivial even for smooth functions. Indeed, the classical proof cannot
be reproduced in this case as it relies on Leibniz's rule and symmetry of sec-
ond derivatives. Notice that Lemma 3.7 prevents all the terms of the second
derivatives from being cancelled as happens in the classical case. In the next
lines we sketch a possible proof of this identity in order to �nd out the di�cul-
ties. We emphasize that the next argument is formal in order to illustrate the
di�culties in proving the fractional Piola identity. The main assumption we
make is that all integrals involved are absolutely convergent without the need
of the principal value, so that we can apply Fubini's theorem. In this section
we will extensively employ the following formulas for the fractional gradient
and divergence, obtained from De�nition 3.1.2 through odd symmetry,

Dsu(x) = −cn,s
�

u(y)

|x− y|n+s+1
⊗ (x− y) dy;

divs φ(x) = −cn,s pvx

�
φ(y)

|x− y|n+s
· x− y
|x− y|

dy.

(4.1)

For simplicity in the calculations, we set n = 2, the simplest case. Then, for
u : R2 → R2, with ui : R2 → R, i = 1, 2, its components, the �rst row of
cof Dsu(x) is

(Ds
2u2(x), Ds

1u2(x)) =

− cn,s
(�

u2(y)

|x− y|n+s+1
(x2 − y2) dy, −

�
u2(y)

|x− y|n+s+1
(x1 − y1) dy

)
,
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and, using (4.1), the �rst component of Divs cof Dsu(x) is

c2
n,s

� [�
u2(z)

|y − z|n+s+1
(y2 − z2) dz (x1 − y1)

−
�

u2(z)

|y − z|n+s+1
(y1 − z1) dz (x2 − y2)

]
1

|x− y|n+s+1
dy

= c2
n,s

�
u2(z)

�
det (x− y, y − z)

|x− y|n+s+1|y − z|n+s+1
dy dz.

Then, the problem is solved is

pv

�
det (x− y, y − z)

|x− y|n+s+1|y − z|n+s+1
dy = 0 (4.2)

Notice that the integrals in (4.2) are not de�ned as Lebesgue integrals. The
real proof will consist in making these calculations rigorous for arbitrary di-
mension n. The underlying reason of why the fractional Piola identity is true
is that detDsu is a sort of null Lagrangian in the sense that, for any n ≥ 2,
the integral

pv

�
det(x− a1, . . . , x− an)

|x− a1|n+s+1 · · · |x− an|n+s+1
dx

is zero. This is a consequence of the fact that the determinant is an alter-
nating multilinear form, as well as that detDu is a classical null Lagrangian.
However, as we will see in Lemma 4.1, the previous integral is not de�ned as
a proper integral but as a principal value centered at points a1, . . . , an, and
this will cause technical di�culties in the proof.

We start by reviewing a version of the change of variables formula for
surface integrals (see, e.g., [86, Prop. 2.7]). Let Γ be an oriented (n − 1)-
dimensional manifold with continuous unit normal �eld ν. Let T : Rn → Rn
be a�ne and injective, with corresponding linear map ~T . Let g : Rn → Rn
be smooth. Then

�
Γ
g(Tx) · cof ~Tν(x) dS(x) =

�
T (Γ)

g(x) · cof ~Tν(T−1x)

| cof ~Tν(T−1x)|
dS(x),

where dS denotes the surface element. Now assume that T is a symmetry
across a hyperplane, so T−1 = T , det ~T = −1 and ~T−1 = ~T = ~T T = − cof ~T .
Therefore,

−
�

Γ
g(Tx) · ~Tν(x) dS(x) = −

�
T (Γ)

g(x) · ~Tν(Tx) dS(x).
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Thus �
Γ

~Tg(Tx) · ν(x) dS(x) =

�
T (Γ)

~Tg(x) · ν(Tx) dS(x).

As this is true for every g, we have that

�
Γ
g(x) · ν(x) dS(x) =

�
T (Γ)

g(Tx) · ν(Tx) dS(x), (4.3)

which is the formula we will use in Lemma 4.1.1.
In this and the next sections we will employ the following notation for the

submatrices.

De�nition 4.1.1. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ i1 <
· · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n.

a) We de�ne [·]M = [·]Mi1,...,ik;j1,...,jk
: Rn×n → Rk×k as the map such that

[F ]M is the submatrix of F ∈ Rn×n formed by the rows i1, . . . , ik and the
columns j1, . . . , jk.

b) We de�ne [·]M̄ = [·]M̄i1,...,ik;j1,...,jk
: Rk×k → Rn×n as the map such that

[F ]M̄ is the matrix whose rows i1, . . . , ik and columns j1, . . . , jk coincide
with those of F , whereas the rest of the entries are zero.

c) We de�ne [·]N = [·]Ni1,...,ik : Rn → Rk as the map such that [v]N is the
subvector of v ∈ Rn formed by the entries i1, . . . , ik.

d) We de�ne [·]N̄ = [·]N̄i1,...,ik : Rk → Rn as the map such that [v]N̄ is the

vector whose entries i1, . . . , ik coincide with those of v, whereas the rest of
the entries are zero.

e) We de�ne [·]Ñ = [·]Ñi1,...,ik : Rn → Rn as [·]N̄ ◦ [·]N = [[·]N ]N̄ .

To clarify this notation, we have used letters without diacritical marks to
denote a submatrix or a subvector whereas the ones with diacritical marks
are used for the extended versions (by zeros).

The following formulas for the determinant will be useful. Given A ∈
Rn×n, we express it as

A =

a1
...
an

 ,
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where a1, . . . , an ∈ Rn are its rows. Then detA = ai · (cof A)i for each
i ∈ {1, . . . , n}, where (cof A)i denotes the i-th row of cof A. Now we realize
that if b ∈ Rn and

A′ =



a1
...

ai−1

b
ai+1
...
an


,

then
detA′ = (cof A)i · b. (4.4)

The following lemma is the rigorous version of (4.2).

Lemma 4.1.1. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ j1 <
· · · < jk ≤ n and let [·]N = [·]Nj1,...,jk be the function of De�nition 4.1.1.

Then there exists a continuous function G : [0,∞)× (Rn)k−1 → R such that
for any a1, . . . , ak ∈ Rn and ε1, . . . , εk > 0 we have∣∣∣∣∣

�
(
⋃k
j=1 B(aj ,εj))

c

det([x− a1]N , . . . , [x− ak]N )

|x− a1|n+s+1 · · · |x− ak|n+s+1
dx

∣∣∣∣∣ ≤
ε1−s1

(ε2 · · · εk)n+s+2G(ε1, a2 − a1, . . . , ak − a1).

Proof. We can assume that the points a1, . . . , ak do not lie on an a�ne man-
ifold of dimension k− 2, since otherwise det([x− a1]N , . . . , [x− ak]N ) = 0 for
all x ∈ Rn.

De�ne h : Rn \ {0} → R as

h(x) =
−1

(n+ s− 1)|x|n+s−1
(4.5)

and hi : Rn \ {ai} → R as hi(x) = h(x − ai), for each i = 1, . . . , k. De�ne
H : Rn \ {a1, . . . , ak} → Rk componentwise as H = (h1, . . . , hk)

T . Then

DH(x) =

∇h1(x)
...

∇hk(x)

 =


x−a1

|x−a1|n+s+1

...
x−ak

|x−ak|n+s+1

 . (4.6)
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Call ~ = (j1, . . . , jk) and denote by D~H the submatrix of DH formed by the
columns j1, . . . , jk. Then, for all x ∈ Rn \ {a1, . . . , ak},

detD~H(x) =
det([x− a1]N , . . . , [x− ak]N )

|x− a1|n+s+1 · · · |x− ak|n+s+1
. (4.7)

As DH ∈ Lp
((⋃k

j=1B(aj , εj)
)c
,Rn×n

)
for all p ∈ [1,∞], we have detD~H ∈

L1
((⋃k

j=1B(aj , εj)
)c)

. Therefore,

�
(
⋃k
j=1 B(aj ,εj))

c
detD~H = lim

R→∞

�
B(0,R)\

⋃k
j=1 B(aj ,εj)

detD~H.

As H is smooth outside
⋃k
j=1B(aj , εj), we have that

detD~H = div[h1(cof D~H)1]N̄ ,

where (cof D~H)1 indicates the �rst row of cof D~H, and [·]N̄ = [·]N̄j1,...,jk is

the function of De�nition 4.1.1. LetR > 0 be big enough so that
⋃k
j=1 B̄(aj , εj) ⊂

B(0, R). Then, by the divergence theorem,
�
B(0,R)\

⋃k
j=1 B(aj ,εj)

detD~H =

−
�
∂
⋃k
j=1B(aj ,εj)

[h1(cof D~H)1]N̄ · νj +

�
∂B(0,R)

[h1(cof D~H)1]N̄ · νR,

where νj(x) =
x−aj
εj

in ∂B(aj , εj) for j = 1, . . . , k, and νR(x) = x
R in ∂B(0, R).

Having in mind the expressions (4.5) and (4.6), we �nd that, for some constant
C > 0, ∣∣∣∣∣

�
∂B(0,R)

[h1(cof D~H)1]N̄ · νR

∣∣∣∣∣ ≤ C

R(n+s)k−1
,

which goes to zero as R→∞. Therefore,
�
(
⋃k
j=1 B(aj ,εj))

c
detD~H = −

�
∂
⋃k
j=1 B(aj ,εj)

[h1(cof D~H)1]N̄ · νj . (4.8)

For each i = 1, . . . , n we set

Ai = ∂

 k⋃
j=1

B(aj , εj)

 ∩ ∂B(ai, εi).
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Figure 4.1: Sets A1, A2, A3 in R3

As a consequence of the inclusion ∂
⋃k
j=1B(aj , εj) ⊂

⋃k
j=1 ∂B(aj , εj), we have

that

∂

k⋃
j=1

B(aj , εj) =

k⋃
j=1

Aj .

Moreover, the (n− 1)-dimensional area of Ai ∩ Aj is zero for 1 ≤ i < j ≤ k.
Figure 4.1 illustrates this situation when k = n = 3.

Next, using (4.4) and (4.6), we have that for j = 2, . . . , k and x ∈
∂B(aj , εj),

[h1(cof D~H)1]N̄ · νj(x) =
det([x− aj ]N , [x− a2]N , . . . , [x− ak]N )

|x− aj | |x− a2|n+s+1 · · · |x− ak|n+s+1 = 0.

As a result, recalling (4.8) and the inclusion Aj ⊂ ∂B(aj , εj), we have that

�
(
⋃k
j=1 B(aj ,εj))

c
detD~H dx = −

�
A1

[h1(cof D~H)1]N̄ · ν1 dS. (4.9)

Having in mind the expression (4.5), the multilinearity of the determinant
and considering (4.4) and (4.6), we have that, for x ∈ A1,

−[h1(cof D~H)1]N̄ · ν1(x) =
1

n+ s− 1

1

εn+s
1

(cof D~H)1 · [x− a1]N

=
1

n+ s− 1

1

εn+s
1

det([x− a1]N , [x− a2]N , . . . , [x− ak]N )

|x− a2|n+s+1 · · · |x− ak|n+s+1

=
1

n+ s− 1

1

εn+s
1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|x− a2|n+s+1 · · · |x− ak|n+s+1

=
1

n+ s− 1

1

εn+s−1
1

([cof([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )]M̄ )1

|x− a2|n+s+1 · · · |x− ak|n+s+1 · ν1(x),

(4.10)
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Π

A+
1

A−1

a1

A1
a2
A2

Figure 4.2: Sets A1, A2, A
+
1 , A

−
1 and Π

where [·]M̄ = [·]M̄i1,...,ik;j1,...,jk
is the function of De�nition 4.1.1.

Let Πk be the only hyperplane in Rk such that the points [a1]N , . . . , [ak]N
belong to Πk, and consider one of the two unit normals ~n ∈ Rk to Πk. Let
Tk : Rk → Rk be the symmetry with respect to Πk, so that for every y ∈ Rk,

Tky = y − 2(y − [a1]N ) · ~n. (4.11)

Let ~m = [~n]N̄ , and let Π be the a�ne hyperplane in Rn with normal ~m
passing through a1. Consider T : Rn → Rn as the symmetry across Π. Then,
for all x ∈ Rn,

Tx = x− 2(x− a1) · ~m. (4.12)

Let ak+1, . . . , an ∈ Π be such that the points a1, . . . , an do not lie in an a�ne
manifold of dimension n − 2. De�ne A±1 = {x ∈ A1 : ±det(x − a1, a1 −
a2, . . . , a1− an) > 0}. Then T (A±1 ) = A∓1 , and A

+
1 ∪A

−
1 cover A1 up to a set

of zero (n−1)-measure; see Figure 4.2. Using the change of variables formula
(4.3), we obtain

�
A−1

([cof([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )]M̄ )1

|x− a2|n+s+1 · · · |x− ak|n+s+1 · ν1(x) dS(x)

=

�
A+

1

([cof([Tx− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )]M̄ )1

|Tx− a2|n+s+1 · · · |Tx− ak|n+s+1 · ν1(Tx) dS(x).

(4.13)

Now, thanks to (4.4), for x ∈ A+
1 ,

([cof([Tx− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )]M̄ )1 · ν1(Tx)

=
1

ε1
det([Tx− a1]N , [a1 − a2]N , . . . , [a1 − ak]N ).

(4.14)
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Let ~Tk : Rk → Rk be the linear map corresponding to the a�ne map Tk, and,
analogously, ~T : Rn → Rn the linear map corresponding to T . We notice that
det ~Tk = −1. Having in mind (4.11) and (4.12), we �nd that

~Tky = y − 2y · ~n, y ∈ Rk

and
~Tx = x− 2x · ~m, x ∈ Rn,

from which we deduce that ~Tk ◦ [·]N = [·]N ◦ ~T . Thus,

det ([Tx− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

= det([Tx− Ta1]N , [Ta1 − Ta2]N , . . . , [Ta1 − Tak]N )

= det([~T (x− a1)]N , [~T (a1 − a2)]N , . . . , [~T (a1 − ak)]N )

= det(~Tk([x− a1]N ), ~Tk([a1 − a2]N ), . . . , ~Tk([a1 − ak]N ))

= det ~Tk([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

= −det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N ).

(4.15)

Putting together (4.13), (4.14) and (4.15), we obtain that

�
A−1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|x− a2|n+s+1 · · · |x− ak|n+s+1 dS(x) =

−
�
A+

1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|Tx− a2|n+s+1 · · · |Tx− ak|n+s+1 dS(x).

Consequently, when we de�ne f : Rn \ {a2, . . . , ak} → R as

f(y) :=
1

(|y − a2| · · · |y − ak|)n+s+1 ,

we have that
�
A1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|x− a2|n+s+1 · · · |x− ak|n+s+1 dS(x) =

�
A+

1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N ) [f(x)− f(Tx)] dS(x).

(4.16)

For every x ∈ A+
1 , we join x with Tx by a curve γx inside A1, and note

that the length of γx can be taken to be bounded by 2πε1. Accordingly, let
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γx : [0, 1] → A1 be of class C1 such that γx(0) = x, γx(1) = Tx and |γ′x| is
constant with |γ′x| ≤ 2πε1. Then

|f(x)− f(Tx)| = |f(γx(0))− f(γx(1))| ≤
� 1

0
|γ′x| |∇f(γx(t))| dt

≤ 2πε1

� 1

0
|∇f(γx(t))| dt.

(4.17)

We calculate

|∇f(y)| = (n+ s+ 1) (|y − a2| · · · |y − ak|)−n−s−2
k∑
i=2

k∏
j=2
j 6=i

|y − aj | , (4.18)

for y ∈ Rn \ {a2, . . . , ak}.
Now, as |y − aj | > εj for every y ∈ A1 and j ∈ {2, . . . , k},

|∇f(y)| ≤ n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

|y − aj |

≤ n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |),

so with (4.17) we obtain that

|f(x)− f(Tx)| ≤ 2πε1
n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |). (4.19)

On the other hand, for all x ∈ A1,

|det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )|

≤ k! |x− a1|
k∏
j=2

|a1 − aj | = k! ε1

k∏
j=2

|a1 − aj | .
(4.20)

Putting together (4.7), (4.9), (4.10), (4.16), (4.19) and (4.20), as well as the
fact that the (n− 1)-dimensional area of A+

1 is bounded by a constant times

113



Chapter 4. Existence of minimizers of vector fractional functionals

under polyconvexity

εn−1
1 , we obtain that, for a constant C > 0 depending on n and s,∣∣∣∣∣

�
(
⋃k
j=1 B(aj ,εj))

c

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|x− a1|n+s+1 · · · |x− ak|n+s+1
dx

∣∣∣∣∣ ≤
C ε1−s1

(ε2 · · · εk)n+s+2

 k∏
j=2

|a1 − aj |

 k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |).

The existence of the function G of the statement follows.

We are in a position to prove the fractional Piola Identity. Henceforth,
supp denotes the support of a function.

Theorem 4.1.2. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ i1 <
· · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n and the functions

[·]M = [·]Mi1,...,ik;j1,...,jk
, [·]M̄ = [·]M̄i1,...,ik;j1,...,jk

of De�nition 4.1.1. Let u ∈ C∞c (Rn,Rn) and s ∈ (0, 1). Then

Divs([cof[Dsu]M ]M̄ ) = 0.

Proof. Let

[·]N = [·]Nj1,...,jk , [·]N̄ = [·]N̄j1,...,jk

be the maps of De�nition 4.1.1. Naturally, Divs([cof[Dsu]M ]M̄ ) = 0 if and
only if

divs[(cof[Dsu]M )i` ]N̄ = 0, ` = 1, . . . , k.

We shall show divs[(cof[Dsu]M )i1 ]N̄ = 0. The rest of the rows would proceed
analogously.

Using (4.1), we have that, for a.e. x ∈ Rn,

(−1)k−1

ckn,s
divs[(cof[Dsu]M )i1 ]N̄ (x) =

(−1)k−1

ck−1
n,s

pvx

�
[(cof[Dsu]M )i1 ]N̄ (x′)

|x′ − x|n+s+1
· (x′ − x) dx′.

(4.21)
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Now, by (4.4) and (4.1), we have that for a.e. x, x′ ∈ Rn,

(−1)k−1

ck−1
n,s

[(cof[Dsu]M )i1 ]N̄ (x′)

|x′ − x|n+s+1
· (x′ − x) =

(−1)k−1

ck−1
n,s

(cof[Dsu]M )i1(x′)

|x′ − x|n+s+1
· [x′ − x]N

=
(−1)k−1

ck−1
n,s

det ([x′ − x]N , [D
sui2(x′)]N , . . . , [D

suik(x′)]N )

|x′ − x|n+s+1

= det

(
[x′ − x]N
|x′ − x|n+s+1

,pvx′

�
ui2(y2)[x′ − y2]N
|x′ − y2|n+s+1

dy2, . . . ,

pvx′

�
uik(yk)[x

′ − yk]N
|x′ − yk|n+s+1

dyk

)
= lim

ε2→0
· · · lim

εk→0
fxε2,...,εk(x′),

(4.22)

where for each x ∈ Rn and ε2, . . . , εk > 0, we have de�ned fxε2,...,εk : Rn → R
by

fxε2,...,εk(x′) : = det

(
[x′ − x]N
|x′ − x|n+s+1

,

�
B(x′,ε2)c

ui2(y2)[x′ − y2]N
|x′ − y2|n+s+1

dy2, . . . ,

�
B(x′,εk)c

uik(yk)[x
′ − yk]N

|x′ − yk|n+s+1
dyk

)

and we have used the continuity of the determinant. Let ρ > 0 be such
that suppu ⊂ B(x′, ρ) for all x′ ∈ suppu, and �x ` ∈ {2, . . . , k}. By odd
symmetry, we have that
�
B(x′,εj)c

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

dy` =

�
B(x′,ρ)\B(x′,εj)

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

dy` =

�
B(x′,ρ)\B(x′,εj)

(
ui`(y`)− ui`(x

′)
) [x′ − y`]N
|x′ − y`|n+s+1

dy`,

so, using the fact that u is Lipschitz, we have, for some constant L > 0, that∣∣∣∣∣
�
B(x′,εj)c

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

dy`

∣∣∣∣∣ ≤
�
B(x′,ρ)

|ui`(y`)− ui`(x′)|
|x′ − y`|n+s

dy`

≤ L
�
B(x′,ρ)

1

|x′ − y`|n+s−1
dy`

= L

�
B(0,ρ)

1

|y|n+s−1
dy <∞.
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This shows that ∣∣fxε2,...,εk(x′)
∣∣ ≤ c

|x′ − x|n+s

for some c > 0 only depending on u and n. As�
B(x,ε1)c

1

|x′ − x|n+s
dx′ <∞,

for any ε1 > 0, we can apply dominated convergence to conclude that�
B(x,ε1)c

lim
ε2→0

· · · lim
εk→0

fxε2,...,εk(x′) dx′ = lim
ε2→0

· · · lim
εk→0

�
B(x,ε1)c

fxε2,...,εk(x′) dx′.

Recalling (4.21) and (4.22), with this we obtain that

(−1)k−1

ckn,s
divs[(cof[Dsu]M )i1 ]N̄ (x) = lim

ε1→0
lim
ε2→0

· · · lim
εk→0

�
B(x,ε1)c

fxε2,...,εk(x′) dx′.

(4.23)
Now for every ε1, . . . , εk > 0 we de�ne Dε1,...,εk := B(x, ε1) ∪

⋃k
j=2B(yj , εj)

and have that, thanks to the multilinearity of the determinant,�
B(x,ε1)c

fxε2,...,εk(x′) dx′

=

�
B(x,ε1)c

�
B(x′,ε2)c

· · ·
�
B(x′,εk)c

det ([x′ − x]N , ui2(y2)[x′ − y2]N , . . . , uik(yk)[x
′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
dy2 · · · dyk dx′

=

�
uik(yk) · · ·

�
ui2(y2)

�
Dcε1,...,εk

det ([x′ − x]N , [x
′ − y2]N , . . . , [x

′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
dx′ dy2 · · · dyk.

Set

g(x, x′, y2, . . . , yk) :=
det ([x′ − x]N , [x

′ − y2]N , . . . , [x
′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
.

Then,∣∣∣∣∣
�
B(x,ε1)c

fxε2,...,εk(x′) dx′

∣∣∣∣∣ ≤
‖u‖k−1

∞

�
suppu

· · ·
�

suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk.
(4.24)
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Thanks to Lemma 4.1.1,∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ ≤
ε1−sk

(ε1 · · · εk−1)n+s+2G(εk, x− yk, y2 − yk, . . . , yk−1 − yk),

(4.25)

where G is the function that appears therein. Integrating in (4.25), we �nd
that

�
suppu

· · ·
�

suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk ≤

h(εk, x)
ε1−sk

(ε1 · · · εk−1)n+s+2 ,

for some continuous function h : [0,∞)× Rn → [0,∞). Consequently,

lim
εk→0

�
suppu

· · ·
�

suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk = 0,

and, in view of (4.23) and (4.24), we obtain that divs[(cof[Dsu]M )i1 ]N̄ (x) =
0.

4.2 Weak continuity of detDsu

In this section we prove that any minor (determinant of a submatrix) of Dsu
is a weakly continuous mapping in Hs,p. We start by expressing a nonlocal
integration by parts formula for the minors of Dsu that involves the operator
Ks
ϕ of Lemma 3.3.2. Recall that for any F ∈ Rn×n and 1 ≤ i ≤ n we denote

by Fi the i-th row of F .

Lemma 4.2.1. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ i1 <
· · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n and the functions

[·]M = [·]Mi1,...,ik;j1,...,jk
, [·]M̄ = [·]M̄i1,...,ik;j1,...,jk

, [·]Ñ = [·]Ñi1,...,ik
of De�nition 4.1.1. Let p ≥ k − 1, q ≥ p

p−1 and 0 < s < 1. Let u ∈
Hs,p(Rn,Rn) be such that cof[Dsu]M ∈ Lq(Rn,Rk×k). Then, det[Dsu]M ∈
L1

loc(Rn), and for every ϕ ∈ C∞c (Rn) we have that [u]N̄ ·Ks
ϕ([cof[Dsu]M ]M̄ ) ∈

L1(Rn) and�
det[Dsu]M (x)ϕ(x) dx = −1

k

�
[u]Ñ (x) ·Ks

ϕ([cof[Dsu]M ]M̄ )(x) dx. (4.26)
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Proof. The fact det[Dsu]M ∈ L1
loc(Rn) is a consequence of formula (4.4) and

Hölder's inequality, since q ≥ p
p−1 . Moreover, [u]Ñ · K

s
ϕ([cof[Dsu]M ]M̄ ) ∈

L1(Rn), since [u]Ñ ∈ L
p(Rn,Rn) and Ks

ϕ([cof[Dsu]M ]M̄ ) ∈ Lr(Rn,Rn) for all
r ∈ [1, q] thanks to Lemma 3.3.2.

Assume �rst u ∈ C∞c (Rn,Rn) and let ψ ∈ C∞c (Rn). Fix x ∈ Rn and
i ∈ {i1, . . . , ik}. By Lemma 3.3.6 and Theorem 4.1.2,

divs (ψ ([cof[Dsu]M ]M̄ )i) (x) = Ks
ψ

(
([cof[Dsu]M ]M̄ )Ti

)
(x).

When we apply Proposition 3.1.3, we obtain from integration of the previous
formula that

0 =

�
divs (ψ ([cof[Dsu]M ]M̄ )i) (x) dx =

�
Ks
ψ

(
([cof[Dsu]M ]M̄ )Ti

)
(x) dx.

By Fubini's theorem and the de�nitions of Ks
ψ and fractional gradient,

�
Ks
ψ

(
([cof[Dsu]M ]M̄ )Ti

)
(x) dx =

�
Dsψ(y) · ([cof[Dsu]M ]M̄ )i (y) dy.

We thus have the equality�
Dsψ(y) · ([cof[Dsu]M ]M̄ )i (y) dy = 0. (4.27)

Now we assume that u ∈ Hs,p(Rn,Rn) with cof[Dsu]M ∈ Lq(Rn,Rk×k), and,
again ψ ∈ C∞c (Rn). Taking into account Proposition 3.2.2, let {uj}j∈N be a
sequence in C∞c (Rn,Rn) converging to u in Hs,p(Rn,Rn). Then [Dsuj ]M →
[Dsu]M in Lp(Rn,Rk×k) and, hence, cof[Dsuj ]M converges to cof[Dsu]M

in L
p
k−1 (Rn,Rk×k), so [cof[Dsuj ]M ]M̄ → [cof[Dsu]M ]M̄ in L

p
k−1 (Rn,Rn×n).

Therefore, (4.27) holds as well, since Dsψ ∈ Lr(Rn) for all r ∈ [1,∞] (see
Lemma 3.3.1). Now let ψ ∈ Hs,p(Rn) be of compact support, and let {ψj}j∈N
be a sequence in C∞c (Rn) converging to ψ in Hs,p(Rn) such that

⋃
j∈N suppψj

is bounded. Then, by Lemma 3.3.3 and Remark 3.3.1, Dsψj → Dsψ in
Lr(Rn) for all r ∈ [1, p]. As [cof[Dsu]M ]M̄ ∈ Lq(Rn,Rn×n), we have that
(4.27) holds as well. To sum up, formula (4.27) is valid for any u ∈ Hs,p(Rn)
with cof[Dsu]M ∈ Lq(Rn,Rk×k) and any ψ ∈ Hs,p(Rn) of compact support.

We apply (4.27) to ψ = ϕui, which is in Hs,p(Rn) thanks to Lemma 3.3.6,
and has compact support since so does ϕ. By the formula for Dsψ given by
Lemma 3.3.6, we obtain that

0 =

�
ϕ(y)Dsui(y) · ([cof[Dsu]M ]M̄ )i (y) dy

+

�
Ks
ϕ(uiI)(y) · ([cof[Dsu]M ]M̄ )i (y) dy.

(4.28)
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Using formula (4.4), the fact i ∈ {i1, . . . , ik} and elementary properties of the
functions of De�nition 4.1.1, we �nd that for any F ∈ Rn×n,

Fi · ([cof[F ]M ]M̄ )i = det[F ]M .

Using this and Fubini's theorem, from (4.28) we arrive at

0 =

�
ϕ(y) det[Dsu]M (y) dy+

cn,s

�
ui(x)

�
ϕ(x)− ϕ(y)

|x− y|n+s
([cof[Dsu]M ]M̄ )i (y) · x− y

|x− y|
dy dx.

We sum this equality for i = i1, . . . , ik and obtain that

0 =k

�
ϕ(y) det[Dsu]M (y) dy+

cn,s

�
[u]Ñ (x) ·

�
ϕ(x)− ϕ(y)

|x− y|n+s
([cof[Dsu]M ]M̄ ) (y)

x− y
|x− y|

dy dx,

which is the required formula.

Now we establish the closedness and continuity properties of the minors
of Dsu in the weak topology of Hs,p. Recalling De�nition 4.1.1 a), a minor of
order k is a function µ : Rn×n → R such that there exist 1 ≤ i1 < · · · < ik ≤ n
and 1 ≤ j1 < · · · < jk ≤ n for which µ(F ) = det[F ]M for all F ∈ Rn×n. Recall
the notation p∗s of Theorem 3.5.8, and the a�ne space Hs,p

g of (3.16).

Theorem 4.2.2. Let p ≥ n − 1 and 0 < s < 1. Let g ∈ Hs,p(Rn) and
u ∈ Hs,p

g (Ω,Rn). Let {uj}j∈N be a sequence in Hs,p
g (Ω,Rn) such that uj ⇀ u

in Hs,p(Rn,Rn). Then

a) If k ∈ N with 1 ≤ k ≤ n− 2 and µ is a minor of order k then µ(Dsuj) ⇀

µ(Dsu) in L
p
k (Rn) as j →∞.

b) If cof Dsuj ⇀ ϑ in Lq(Rn,Rn×n) for some q ∈ [1,∞) and ϑ ∈ Lq(Rn,Rn×n)
then ϑ = cof Dsu.

c) Assume detDsuj ⇀ θ in L`(Rn) for some ` ∈ [1,∞) and some θ ∈ L`(Rn).
If sp < n assume, in addition, that cof Dsuj ⇀ cof Dsu in Lq(Rn,Rn×n)

for some q ∈ ( p∗s
p∗s−1 ,∞). Then θ = detDsu.

Proof. We will prove a) by induction on k. For k = 1 the result is trivial.
Assume it holds for some k ≤ n − 3 and let us prove it for k + 1. Let µ
be a minor of order k + 1. In the notation of De�nition 4.1.1 a), µ(F ) =
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det[F ]M for all F ∈ Rn×n, where [·]M = [·]Mi1,...,ik+1;j1,...,jk+1
for some 1 ≤

i1 < · · · < ik+1 ≤ n and 1 ≤ j1 < · · · < jk+1 ≤ n. Let ϕ ∈ C∞c (Rn). By
induction assumption, cof[Dsuj ]M ⇀ cof[Dsu]M in L

p
k (Rn,R(k+1)×(k+1)) as

j → ∞, so [cof[Dsuj ]M ]M̄ ⇀ [cof[Dsu]M ]M̄ in L
p
k (Rn,Rn×n). By Lemma

3.3.2, Ks
ϕ([cof[Dsuj ]M ]M̄ ) ⇀ Ks

ϕ([cof[Dsu]M ]M̄ ) in Lr(Rn,Rn) for every r ∈
[1, pk ]. By Theorem 3.5.14, [uj ]Ñ → [u]Ñ in Lp(Rn), so

[uj ]Ñ ·K
s
ϕ([cof[Dsuj ]M ]M̄ ) ⇀ [u]Ñ ·K

s
ϕ([cof[Dsu]M ]M̄ ) in L1(Rn) (4.29)

since k
p + 1

p ≤ 1. We apply Lemma 4.2.1 and, in particular, formula (4.26) to
conclude that

�
det[Dsuj(x)]M ϕ(x) dx→

�
det[Dsu(x)]M ϕ(x) dx. (4.30)

This shows that det[Dsuj ]M ⇀ det[Dsu]M in the sense of distributions. As

{det[Dsuj ]M}j∈N is bounded in L
p
k+1 (Rn) and p > k + 1, we have that

det[Dsuj ]M ⇀ det[Dsu]M in L
p
k+1 (Rn).

The proof of b) follows the lines of a). Let µ be a minor of order n − 1.
In the notation of De�nition 4.1.1 a), µ(F ) = det[F ]M for all F ∈ Rn×n,
where [·]M = [·]Mi1,...,in−1;j1,...,jn−1

for some 1 ≤ i1 < · · · < in−1 ≤ n and
1 ≤ j1 < · · · < jn−1 ≤ n. Let ϕ ∈ C∞c (Ω). By part a), cof[Dsuj ]M ⇀

cof[Dsu]M in L
p

n−2 (Rn,R(n−1)×(n−1)), so [cof[Dsuj ]M ]M̄ ⇀ [cof[Dsu]M ]M̄ in

L
p

n−2 (Rn,Rn×n). By Lemma 3.3.2,Ks
ϕ([cof[Dsuj ]M ]M̄ ) ⇀ Ks

ϕ([cof[Dsu]M ]M̄ )
in Lr(Rn,Rn) for every r ∈ [1, p

n−2 ]. By Theorem 3.5.14, [uj ]Ñ → [u]Ñ in
Lp(Rn), so convergence (4.29) is also valid since n−2

p + 1
p ≤ 1. Thanks to

(4.26), we conclude that convergence (4.30) holds. This shows that µ(Dsuj) ⇀
µ(Dsu) in the sense of distributions. As this is true for every minor µ of or-
der n − 1, we obtain that cof Dsuj ⇀ cof Dsu in the sense of distributions.
Thanks to the assumption, ϑ = cof Dsu.

We �nally show part c). Let ϕ ∈ C∞c (Ω). Assume �rst sp < n. By the
assumption and Lemma 3.3.2, Ks

ϕ(cof Dsuj) ⇀ Ks
ϕ(cof Dsu) in Lr(Rn,Rn)

for every r ∈ [1, q]. By Theorem 3.5.14, uj → u in Lt(Rn) for every t ∈ [1, p∗s),
so

uj ·Ks
ϕ(cof Dsuj) ⇀ uj ·Ks

ϕ(cof Dsu) in L1(Rn) (4.31)

since 1
q + 1

p∗s
< 1.

Assume now sp ≥ n. Then {cof Dsuj}j∈N is bounded in L
p

n−1 (Rn,Rn×n)

so, thanks to part b), cof Dsuj ⇀ cof Dsu in L
p

n−1 (Rn,Rn×n). By Lemma
3.3.2, Ks

ϕ(cof Dsuj) ⇀ Ks
ϕ(cof Dsu) in Lr(Rn,Rn) for every r ∈ [1, p

n−1 ]. By
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Theorem 3.5.14, uj → u in Lt(Rn) for every t ∈ [1,∞), so convergence (4.31)
holds since p > n− 1.

In either case, we have convergence (4.31), so by (4.26) we obtain�
detDsuj(x)ϕ(x) dx→

�
detDsu(x)ϕ(x) dx.

This shows that detDsuj ⇀ detDsu in the sense of distributions, so θ =
detDsu.

Remark 4.2.1. A natural question is whether the weak continuity of the
determinant of the fractional gradient may be concluded as a consequence of
the weak continuity of the determinant of the classical gradient. Indeed, one
can use the properties of the Riesz potential to give a simpler proof in the case
p > n. To be precise, in [38, Prop. 2.2] (see also [99, Th. 1.2]) it is shown
that

Dsu = D(I1−s ∗ u) (4.32)

for any u ∈ C∞c (Rn,Rn), where I1−s(x) =
−cn,s
n+s−1 |x|

−(n+1−s). Now, writing
the determinant as a divergence [10, Sect. 6] and using (4.32), we have that�

detDsuϕdx = −
�

(I1−s ∗ u) · (cof DsuDϕ) dx, (4.33)

for any u ∈ C∞c (Rn,Rn) and any test function ϕ ∈ C∞c (Rn). By density of
C∞c in Hs,p, equality (4.33) holds for any u ∈ Hs,p(Rn,Rn). Now, taking into
account the Hardy�Littlewood�Sobolev embedding [110, Th. 1, b)], and Theo-
rem 3.5.8 it is easy to obtain the weak continuity of detDsu in Hs,p(Rn,Rn)
for p > n. We do not know whether it is possible to extend the previous argu-
ment for p ≥ n−1 without making use of the fractional Piola identity. This is
relevant since, at least in the classical case, the condition p ≥ n− 1 is sought
in order to have more realistic assumptions (in Solid Mechanics) than p > n.

4.3 Existence of minimizers and equilibrium equa-

tions

In this section we prove the existence of minimizers in Hs,p of functionals of
the form

I(u) :=

�
W (x, u(x), Dsu(x)) dx. (4.34)

under natural coercivity and polyconvexity assumptions. We also derive the
associated Euler�Lagrange equation, which is a fractional partial di�erential
system of equations.
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under polyconvexity

We will assume the hypothesis of polyconvexity, introduced in De�nition
4.0.1.

The existence theorem is the following. Its proof relies on a standard
argument in the Calculus of Variations, once we have the continuity (with
respect to the weak convergence) of the minors given by Theorem 4.2.2.

Theorem 4.3.1. Let p ≥ n − 1 satisfy p > 1 and 0 < s < 1. Let W :
Rn × Rn × Rn×n → R ∪ {∞} satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable, where Ln denotes the Lebesgue sigma-
algebra in Rn, whereas Bn and Bn×n denote the Borel sigma-algebras in
Rn and Rn×n, respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Rn and every y ∈ Rn, the function W (x, y, ·) is polyconvex.

d) There exist a constant c > 0, an a ∈ L1(Rn) and a Borel function h :
[0,∞)→ [0,∞) such that

lim
t→∞

h(t)

t
=∞

and, for some q > p∗s
p∗s−1 , if sp < n,{

W (x, y, F ) ≥ a(x) + c |F |p + c |cof F |q + h(|detF |), if sp < n,

W (x, y, F ) ≥ a(x) + c |F |p , if sp ≥ n,

for a.e. x ∈ Rn, all y ∈ Rn and all F ∈ Rn×n.

Let Ω be a bounded open subset of Rn. Let u0 ∈ Hs,p(Rn,Rn). De�ne I as
in (4.34), and assume that I is not identically in�nity in Hs,p

u0 (Ω,Rn). Then
there exists a minimizer of I in Hs,p

u0 (Ω,Rn).

Proof. Assumption d) shows that the functional I is bounded below by
�
a.

As I is not identically in�nity in Hs,p
u0 (Ω,Rn), there exists a minimizing se-

quence {uj}j∈N of I in Hs,p
u0 (Ω,Rn). Assumption d) implies that {Dsuj}j∈N

is bounded in Lp(Rn,Rn×n). Thanks to Theorem 3.5.8, {uj}j∈N is bounded
in Lp(Ω,Rn×n). As uj = u0 in Ωc for all j ∈ N, we also have that {uj}j∈N
is bounded in Lp(Rn,Rn), and, consequently, also in Hs,p(Rn,Rn). Then, we
can extract a weakly convergent subsequence since Hs,p(Rn,Rn) is re�exive.
Using Theorem 3.5.14, we obtain that there exists u ∈ Hs,p

u0 (Rn,Rn) such that
for a subsequence (not relabelled),

uj ⇀ u in Hs,p(Rn,Rn) and uj → u in Lp(Rn,Rn). (4.35)
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Now, by Theorem 4.2.2, for any minor µ of order k ≤ n− 2, we have that

µ(Dsuj) ⇀ µ(Dsu) in L
p
k (Rn). (4.36)

If sp < n then, {cof Dsuj}j∈N is bounded in Lq(Rn,Rn×n) by assumption
d), whereas if sp ≥ n we call q := p

n−1 and have that {cof Dsuj}j∈N is bounded
in Lq(Rn,Rn×n). In either case we have that q > 1, so for a subsequence
{cof Dsuj}j∈N converges weakly in Lq(Rn,Rn×n) and, by Theorem 4.2.2,

cof Dsuj ⇀ cof Dsu in Lq(Rn,Rn×n). (4.37)

If sp < n then, by assumption d) and de la Vallée Poussin's criterion,
{detDsuj}j∈N is equiintegrable, whereas if sp ≥ n we have that {detDsuj}j∈N
is bounded in L

p
n (Rn) and p

n > 1. In either case we have that, for a subse-
quence {detDsuj}j∈N converges weakly in L`(Rn) with{

` = 1 if sp < n,

` = p
n if sp ≥ n,

and, hence, by Theorem 4.2.2,

detDsuj ⇀ detDsu in L`(Rn). (4.38)

Convergences (4.35)�(4.38) imply, thanks to a standard lower semicon-
tinuity result for polyconvex functionals (see, e.g., [15, Th. 5.4] or [59, Th.
7.5]), that for any R > 0,�

B(0,R)
W (x, u(x), Dsu(x)) dx ≤ lim inf

j→∞

�
B(0,R)

W (x, uj(x), Dsuj(x)) dx.

Therefore, �
B(0,R)

(W (x, u(x), Dsu(x))− a(x)) dx ≤

lim inf
j→∞

�
B(0,R)

(W (x, uj(x), Dsuj(x))− a(x)) dx ≤

lim inf
j→∞

�
(W (x, uj(x), Dsuj(x))− a(x)) dx.

By monotone convergence,�
(W (x, u(x), Dsu(x))− a(x)) dx ≤ lim inf

j→∞

�
(W (x, uj(x), Dsuj(x))− a(x)) dx,

so
I(u) ≤ lim inf

j→∞
I(uj).

Therefore, u is a minimizer of I inHs,p
u0 (Ω,Rn) and the proof is concluded.
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Comparing Lemmas 3.6.1 and 3.6.2 with Theorem 4.3.1, we see that func-
tions exhibiting singularities as those shown in those lemmas are compatible
with the existence result of Theorem 4.3.1, in opposition to the case of clas-
sical elasticity (see, e.g., [10, 11, 13, 14, 16, 69]). Indeed, for a u ∈ Hs,p(Rn)
of compact support and p > n, by Hölder's inequality and Remark 3.3.1,
cof Dsu ∈ Lq(Rn,Rn×n) for every q ∈ [1, p

n−1 ] and detDsu ∈ Lr(Rn) for ev-
ery r ∈ [1, pn ]. Take now an s ∈ (0, 1) such that sp < n, so that this regime is
compatible with cavitation (see Lemma 3.6.2). Considering the function h of
Theorem 4.3.1 as h(t) := t

p
n , we see that this map u is compatible with the

assumptions of Theorem 4.3.1 if and only if p
n−1 >

p∗s
p∗s−1 , so n

2−np < sp. To
sum up, in the regime

p > n, 0 < s <
n

p

a typical cavitation map is compatible with the hypothesis of Theorem 4.3.1.
Similarly, if p > n and n2 − np < sp < 1, i.e., in the regime

p > n, 0 < s <
1

p

the hypothesis of Theorem 4.3.1 are compatible with discontinuities along
hypersurfaces.

To �nish this section, we explore the equilibrium conditions that minimiz-
ers of functional (4.34) satisfy. This Euler�Lagrange, or equilibrium, condi-
tions constitute a nonlinear system of fractional PDE, and therefore we are
providing an existence result for such kind of systems based on polyconvexity.
To be precise, given g ∈ Hs,p(Rn,Rn), the boundary value problem reads as{

divs
(
∂W
∂F (x, u,Dsu)

)
= ∂W

∂u (x, u,Dsu), in Ω

u = g in Ωc.
(4.39)

As a consequence of the fractional integration by parts( Proposition 3.2.4),
we de�ne a weak solution of (4.39) as a u ∈ Hs,p

g (Ω,Rn) satisfying

� [
∂W

∂F
(x, u,Dsu) ·Dsv +

∂W

∂u
(x, u,Dsu) · v

]
dx = 0 (4.40)

for all v ∈ C∞c (Rn,Rn) with v = 0 in Ωc.
The derivation of (4.40) for a minimizer u is standard. For this, we make

the assumptions a�b) below, which are slightly adapted from [39, Conditions
3.22 and 3.33], although other sets of assumptions are also possible (see,
e.g., [10, Sect. 7] or [39, Sect. 3.4.2]).

124



Section 4.3. Existence of minimizers and equilibrium equations

Theorem 4.3.2. Let W : Rn × Rn × Rn×n → R be a function satisfying

a) W (·, u, F ) is measurable for every (u, F ) ∈ Rn ×Rn×n and W (x, ·, ·) is of
class C1 for a.e. x ∈ Rn.

b) There exist an a ∈ L1(Rn), an α ∈ R with{
α ∈ [p, p∗s] if sp < n,

α ∈ [p,∞) if sp ≥ n,

and a c > 0 such that

|W (x, u, F )|+
∣∣∣∣∂W∂u (x, u, F )

∣∣∣∣+

∣∣∣∣∂W∂F (x, u, F )

∣∣∣∣ ≤ a(x) + c (|u|α + |F |p) ,

for a.e. x ∈ Rn and all (u, F ) ∈ Rn × Rn×n.

Let g ∈ Hs,p(Rn,Rn). De�ne I as in (4.34), and let u be a minimizer of I in
Hs,p
g (Ω,Rn). Then u is a weak solution of (4.39).

Proof. Let us �x v ∈ C∞c (Rn,Rn) with v = 0 in Ωc. As u+ τv ∈ Hs,p
g (Ω,Rn)

for any τ ∈ R, it su�ces to show that the derivative of I(u + τ v) exists at
τ = 0 and equals the left hand side of (4.40). Thanks to the dominated
convergence theorem, it su�ces to show (see, e.g., [74, Ch. 13, �2, Lemma
2.2]) that there exists G ∈ L1(Rn) such that for every τ ∈ R with |τ | < 1 we
have

I(u+ τ v) <∞ (4.41)

and ∣∣∣∣ ddτ W (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣ ≤ G(x), a.e. x ∈ Rn.

(4.42)
Let us check condition (4.41). Thanks to b) ,

I(u+ τ v) ≤
�
a+ C

�
(|u|α + |Dsu|p + |v|α + |Dsv|p)

for some constant C > 0. Clearly, the integral of |v|α is �nite since v ∈
C∞c (Rn,Rn), and so is the integral of |Dsv|p due to Lemma 3.3.1. In addition,
the integral of |Dsu|p is �nite because u ∈ Hs,p(Rn,Rn). Now, by Theorem
3.5.8 and the interpolation (or Hölder) inequality, u ∈ Lr(Rn,Rn) for all
r ∈ [p, p∗s] if sp < n, and for all r ∈ [p,∞) if sp ≥ n. Therefore, |u|α ∈ L1(Rn).
Condition (4.41) is thus satis�ed.
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We now show condition (4.42). We have, for |τ | < 1 and a.e. x ∈ Ω,∣∣∣∣ ddτ W (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣ ≤∣∣∣∣∂W∂u (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣ ‖v‖L∞ +∣∣∣∣∂W∂F (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣ ‖Dsv‖L∞ ,

where we have used Lemma 3.3.1 to show that Dsv ∈ L∞(Rn). Now, by b),∣∣∣∣∂W∂u (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣+∣∣∣∣∂W∂F (x, u(x) + τv(x), Dsu(x) + τDsv(x))

∣∣∣∣ ≤
a(x) + C (|u(x)|α + |v(x)|α + |Dsu(x)|p + |Dsv(x)|p) ,

(4.43)

for some constant C > 0. As before, the right hand side of (4.43) is in L1(Rn),
so condition (4.42) is proved.
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Chapter 5.

Γ- convergence of polyconvex
functionals depending on the

fractional gradient when s goes
to 1

In this section we continue with the study of polyconvex functionals depending
on the s-fractional gradient by further exploring it through the study of its
limit when s↗ 1. The main results of this part (shown in [22]) are described
as follows. We prove the strong convergence in Lp of Dsu to Du for functions
u ∈ W 1,p, generalizing, and making the topology precise, the convergence
mentioned at the introduction of Chapter 3 for smooth functions. Notice
that this convergence is performed in the fractional parameter s rather than
in the horizon, as done in [84]. This result is of interest in itself, as it provides
a precise di�erential object converging to the distributional gradient. We also
show a weak compactness result inW 1,p, establishing that if {us} is a sequence
such that {Dsus} is bounded in Lp, then there exists a u ∈W 1,p such that us
converges strongly and Dsus converges weakly in Lp as s ↗ 1 to u and Du,
respectively. We also show the weak convergence of the minors of Dsus to
those of Du, whenever Dsus converges weakly in Lp to Du; as a consequence,
we establish a new semicontinuity result for polyconvex functionals. Finally,
we show that the family of vector variational problems based on minimization
of

Is(u) =

�
Rn
W (x, u(x), Dsu(x)) dx, u ∈ Hs,p(Rn,Rn)
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Γ-converges (see Subsection 1.2.3 ) to the functional

I(u) =

�
Rn
W (x, u(x), Du(x)) dx, u ∈W 1,p(Rn,Rn)

as s↗ 1, under the essential assumption of polyconvexity of W (x, u, ·) (De�-
nition 4.0.1) ; we also need the extra assumption p > n for the Γ-convergence.
Other references dealing with Γ-convergence of variational functionals in the
nonlocal setting are [91] (in the context of W s,p), [25] (in nonlinear peri-
dynamics) and [82] (in linear and geometrically nonlinear peridynamics).
Concurrently and independently to the work developed in this Chapter, [37]
treated a closely related problem. Essentially, they address somewhat sim-
ilar Γ-convergence questions than us but mainly in the special case p = 1
and without dealing with polyconvexity. More precisely, they prove some
Γ-convergence properties in the space BV s(Rn) of functions with bounded
s-fractional variation, and study the fractional operators involved. Interest-
ingly, they provide a di�erent proof, not based on Fourier transform like our
Theorem 5.1.1, of the convergence of Dsu to Du in Lp for u ∈W 1,p .

The outline of this Chapter is as follows. In Section 5.1 we prove the
localization of the fractional gradient; namely, that Dsu converges to Du
in Lp for a �xed u ∈ W 1,p (Theorem 5.1.1). In Section 5.2 we prove the
compactness result: for any sequence {us} with a �xed complementary-value
data and bounded {Dsus} in Lp, there exist u ∈ W 1,p and a subsequence
strongly convergent to u in Lp, with the s-fractional gradients converging
weakly to Du in Lp (Theorem 5.2.2). Section 5.3 is devoted to the weak
convergence of the minors of Dsus to the minors of Du when Dsus converges
weakly to Du in Lp (Theorem 5.3.2). Finally, in Section 5.4 we prove a
novel semicontinuity result for polyconvex functionals (Theorem 5.4.1) and
the Γ-convergence result of Is to I under the assumption of polyconvexity
(Theorem 5.4.2) and convexity (Theorem 5.4.3).

5.1 Localization of fractional gradients

In this section we prove the convergence of the s-fractional gradient of aW 1,p

function to its local gradient as s ↗ 1. This result is to be expected, and
easy to obtain for smooth functions using the Fourier transform (see Lemma
3.1.7). In this section we provide a complete proof for functions in W 1,p(Rn).
This result, which is of interest in its own right, is a �rst step to prove the
Γ-convergence of the functional Is to I (see the Introduction). It should be
compared with [28, Cor. 2], where the convergence of the Gagliardo seminorm
to the Lp norm of the fractional gradient is shown (see also [92, Prop. 15.7]).
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The main result of the section is the following. As mentioned previously,
a similar result has been simultaneously proved in [37, Sect. 4.1] without the
use of Fourier transform.

Theorem 5.1.1. Let 0 < s < 1 and 1 < p < ∞. Then, for each u ∈
W 1,p(Rn),

Dsu→ Du in Lp(Rn) as s↗ 1.

Proof. We �rst prove the result for smooth functions and then extend it by
density to W 1,p(Rn).

Let u ∈ C∞c (Rn). By Lemma 3.1.7,

D̂su(ξ) =
2πiξ

|2πξ|1−s
û(ξ), ξ ∈ Rn,

so by the elementary inequality ts ≤ 1 + t for all t ≥ 0,∣∣∣D̂su(ξ)
∣∣∣ = |2πξ|s |û(ξ)| ≤ (1 + |2πξ|) |û(ξ)| . (5.1)

As û is in the Schwartz space (because u ∈ C∞c (Rn)), both û and ξ û(ξ) are
in L1(Rn). Therefore, D̂su ∈ L1(Rn). On the other hand, by basic properties
of the Fourier transform, D̂u(ξ) = 2πiξû(ξ), so clearly, D̂su → D̂u a.e. as
s ↗ 1. Thanks to the bound (5.1) and dominated convergence, D̂su → D̂u
in L1(Rn). As the inverse Fourier transform is continuous from L1(Rn) to
L∞(Rn), we also have that

Dsu→ Du uniformly in Rn.

Now, using a standard interpolation inequality (or Hölder's), we get that

‖Dsu−Du‖p ≤ ‖Dsu−Du‖
1
p

1 ‖D
su−Du‖

1
p′
∞

≤ (‖Dsu‖1 + ‖Du‖1)
1
p ‖Dsu−Du‖

1
p′
∞

≤ C‖u‖
1
p

W 1,1(Rn)
‖Dsu−Du‖

1
p′
∞ ,

where we have used Proposition 3.5.11, considering that, as s ↗ 1, we can
assume s ≥ 1

2 , so the constant C > 0 does not depend on s. Thus, the
convergence Dsu→ Du in Lp follows and the result is true for C∞c functions.

To conclude the proof, we extend this result through a density argument.
Let us consider u ∈W 1,p(Rn). Then, for every ε > 0 we can �nd v ∈ C∞c (Rn)
such that ‖v − u‖W 1,p(Rn) < ε. Thus,

‖Dsu−Du‖p ≤ ‖Dsu−Dsv‖p + ‖Dsv −Dv‖p + ‖Dv −Du‖p
≤ (C + 1)ε+ ‖Dsv −Dv‖p,
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where we have used again Proposition 3.5.11. Finally, when we take limits
we obtain that

lim sup
s↗1

‖Dsu−Du‖p ≤ (C + 1)ε,

for every ε > 0, which concludes the result.

Thanks to Lemma 3.2.3, the previous result also implies the convergence
in Lp of the fractional divergence.

Corollary 5.1.2. Let 0 < s < 1 and 1 < p < ∞. Then, for each φ ∈
W 1,p(Rn,Rn),

divs φ→ div φ in Lp(Rn) as s↗ 1.

By duality we also have next corollary. Hence, interestingly, last conver-
gence can be extend in a broader sense, a least in the sense of distribution,
showing a certain convergence of more general sequences, including those with
functions that may have singularities.

Corollary 5.1.3. Let 0 < s < 1 and 1 ≤ p ≤ ∞. Then, for each u ∈
Lp(Rn,Rn), Dsu converges to Du in the sense of distributions D′, where Du
denotes the distributional derivative. I.e.

�
Dsu(x)ϕ(x) dx→

�
Du(x)ϕ(x) dx

for every ϕ ∈ C∞c (Rn).

5.2 Compactness

In this section we establish that any sequence {us}s∈(0,1) with boundedH
s,p
g (Ω)

norm is precompact in Lq(Rn) for a suitable q ≥ 1.
Even though the continuous embedding ofHs,p intoH s̄,p for 0 < s̄ < s < 1

is already known, we start by giving a new proof of this result, where we show
that the embedding constant is independent of s. This proof follows the ideas
of Theorem 3.5.9.

Proposition 5.2.1. Let 0 < s̄ < s0 < 1. Let Ω ⊂ Rn be a bounded open
set. Then, there exists a constant C = C(Ω, n, s0, s̄) > 0 such that for every
s ∈ [s0, 1), 1 < p <∞ and u ∈ Hs,p

0 (Ω) we have

‖Ds̄u‖p ≤ C‖Dsu‖p. (5.2)
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Proof. By density, it is enough to prove the inequality for u ∈ C∞c (Ω). We
divide the proof into two steps.

Step 1. First, we prove that there exists C = C(Ω, n, s0, s̄) > 0 such that

‖Ds̄u‖Lp(Ω) ≤ C‖Dsu‖p. (5.3)

Let R ≥ 1 be such that Ω ⊂ B(0, R). De�ne Ω1 := B(0, 2R) and �x x ∈ Ω.
Notice that, as a consequence of [99, Th. 1.2] and the semigroup property of
the Riesz potential, we can write

Ds̄u = I1−s̄ ∗Du = (I1−s ∗ Is−s̄) ∗Du = Is−s̄ ∗Dsu.

This equality, together with (3.15) and Lemma 3.1.9 yields

∣∣Ds̄u(x)
∣∣ ≤ 1

γ(s− s̄)

[�
Ω1

|Dsu(y)|
|x− y|n−(s−s̄) dy +

�
Ωc1

|Dsu(y)|
|x− y|n−(s−s̄) dy

]

≤ C(n)

[�
Ω1

|Dsu(y)|
|x− y|n−(s−s̄) dy +

�
Ωc1

|Dsu(y)|
|x− y|n−(s−s̄) dy

]
.

(5.4)

Now Ω1 ⊂ B(x, 3R), so�
Ω1

1

|x− y|n−(s−s̄) dy ≤
�
B(x,3R)

1

|x− y|n−(s−s̄) dy =
σn−1

s− s̄
(3R)(s−s̄)

≤ C(n)
1

s− s̄
R.

(5.5)

Similarly, Ω ⊂ B(y, 3R) for every y ∈ Ω1, so�
Ω

1

|x− y|n−(s−s̄) dx ≤ C(n)
1

s− s̄
R. (5.6)

By (5.5) and Hölder's inequality,

�
Ω1

|Dsu(y)|
|x− y|n−(s−s̄) dy ≤

[
C(n)

1

s− s̄
R

] 1
p′
(�

Ω1

|Dsu(y)|p

|x− y|n−(s−s̄) dy

) 1
p

.

Therefore, using (5.6) and Fubini's theorem, we �nd, as in (3.47),[�
Ω

(�
Ω1

|Dsu(y)|
|x− y|n−(s−s̄) dy

)p
dx

] 1
p

≤ C(n)
1

s− s̄
R ‖Dsu‖p . (5.7)

Now, for any y ∈ Ωc
1, similarly to (3.50), for each x ∈ Ω we have

1

|x− y|n−(s−s̄) ≤ C(n)
1

|y|n−(s−s̄) (5.8)
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and, in fact, (3.51) also holds. Thus, using (5.8) and (3.51),�
Ωc1

|Dsu(y)|
|x− y|n−(s−s̄) dy ≤ C(n)|Ω|

1
p′ ‖u‖Lp(Ω)

�
Ωc1

1

|y|n+s

1

|y|n−(s−s̄) dy

= C(n)|Ω|
1
p′
R−n−s̄

n+ s̄
‖u‖Lp(Ω) .

This last inequality, combined with (5.4) and (5.7), implies by the triangular
inequality that∥∥Ds̄u

∥∥
Lp(Ω)

≤ C(n)
1

s− s̄
R‖Dsu‖p + |Ω|C(n)

R−n−s̄

n+ s̄
‖u‖Lp(Ω).

Finally, we apply Theorem 3.5.9 on the right hand side to obtain∥∥Ds̄u
∥∥
Lp(Ω)

≤ C(n,Ω)

(
1

s− s̄
+
R−n−s̄

n+ s̄

1

s

)
‖Dsu‖p

≤ C(n,Ω)

(
1

s0 − s̄
+

1

s0(n+ s̄)

)
‖Dsu‖p,

which completes the proof of (5.3).

Step 2. Now we prove (5.2). Let us call ΩC = Ω +B(0, 1). Then,∥∥Ds̄u
∥∥
p
≤
∥∥Ds̄u

∥∥
Lp(ΩC)

+
∥∥Ds̄u

∥∥
Lp(ΩcC)

.

By (5.3) there exists C > 0 (depending on ΩC , n, s0, s̄, so, ultimately, on
Ω, n, s0, s̄) such that

‖Ds̄u‖p ≤ C‖Dsu‖p + ‖Ds̄u‖Lp(ΩcC). (5.9)

Now, for x ∈ Ωc
C ,

Ds̄u(x) = −cn,s̄
�

Ω

u(y)

|x− y|n+s̄

x− y
|x− y|

dy,

so, by Lemma 3.1.9, ∣∣Ds̄u(x)
∣∣ ≤ C(n)

�
Ω

|u(y)|
|x− y|n+s̄

dy,

and, hence, by Minkowski's integral inequality,

∥∥Ds̄u
∥∥
Lp(ΩcC)

≤ C(n)

(�
ΩcC

(�
Ω

|u(y)|
|x− y|n+s̄

dy

)p
dx

) 1
p

≤ C(n)

�
Ω
|u(y)|

(�
ΩcC

1

|x− y|(n+s̄)p
dx

) 1
p

dy.

(5.10)
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Now, for every y ∈ Ω we have Ωc
C − y ⊂ B(0, 1)c, and hence

�
ΩcC

1

|x− y|(n+s̄)p
dx =

�
ΩcC−y

1

|z|(n+s̄)p
dx ≤

�
B(0,1)c

1

|z|(n+s̄)p
dx

=
σn−1

(n+ s̄)p− n
≤ σn−1

s̄
.

Thus, continuing from (5.10) we �nd that∥∥Ds̄u
∥∥
Lp(ΩcC)

≤ C(n) max{1, σn−1

s̄
}
�

Ω
|u(y)|dy

≤ C(n) max{1, σn−1

s̄
}max{1, |Ω|} ‖u‖Lp(Ω) .

(5.11)

Inequalities (5.9), (5.11) and Theorem 3.5.9 �nish the proof.

Now we present the main result of this section. The proof of the following
compactness result is partly inspired by that of [82, Lemma 3.6]. This result
should be compared with [91, Th. 1.2], in which a W s,p version is done. In
what follows, given p ∈ [1, n) we denote by p∗ its Sobolev conjugate exponent,
i.e., p∗ = pn

n−p . Recall also the notation p∗s from Theorem 3.5.14.

Theorem 5.2.2. Let 1 < p < ∞ and g ∈ W 1,p(Rn). For each s ∈ (0, 1),
let us ∈ Hs,p

g (Ω) be such that the family {Dsus}s∈(0,1) is bounded in Lp(Rn).
Then, there exist u ∈ W 1,p(Rn) and an increasing sequence {sj}j∈N ⊂ (0, 1)
with limj→∞ sj = 1 such that for every q satisfying

q ∈ [p, p∗) if p < n,

q ∈ [p,∞) if p = n,

q ∈ [p,∞] if p > n,

there exists jq ∈ N for which {usj}j≥jq ⊂ Lq(Rn) and the convergences

usj → u in Lq(Rn) and Dsjusj ⇀ Du in Lp(Rn)

hold as j →∞.

Proof. Thanks to Theorem 5.1.1 and the Sobolev embedding, we can assume,
without loss of generality, that g = 0.

Fix 0 < s̄ < s0 < 1. By hypothesis and Proposition 5.2.1, {Ds̄us}s∈[s0,1)

is bounded in Lp(Rn,Rn), and consequently, by Corollary 3.5.10, {us}s∈[s0,1)

is bounded in H s̄,p
0 (Ω). Since H s̄,p

0 (Ω) is re�exive, there exist u ∈ H s̄,p
0 (Ω)

and an increasing sequence {sj}j≥1 ⊂ [s0, 1), with limj→∞ sj = 1, such that

usj ⇀ u in H s̄,p
0 (Ω).
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Now, if p ≤ n, given q ∈ [p, p∗) (de�ning p∗ = ∞ if p = n), there exists
jq ∈ N such that for all j ≥ j0 we have q < p∗sj . Arguing as above we

obtain that usj ⇀ u in H
sj0 ,p
0 (Ω), so applying Theorem 3.5.14, we have that

{usj}j≥jq ⊂ Lq(Rn) and

usj → u in Lq(Rn).

If p > n, there exists j0 ∈ N such that sj0p > n, and arguing as above using
again Theorem 3.5.14, we have that {usj}j≥j0 ⊂ Lq(Rn), for any q ∈ [p,+∞],
and

usj → u in Lq(Rn).

Next, we have that, as {Dsjusj}j≥j0 is bounded in Lp(Rn,Rn), there exists
V ∈ Lp(Rn,Rn) such that Dsjusj ⇀ V in Lp(Rn,Rn) as j →∞, in principle
up to a subsequence, but we will see that in fact it holds true for the whole
sequence. Given ϕ ∈ C1

c (Rn,Rn), using the fractional integration by parts,
Proposition 3.2.4, we get

�
Dsjusj (x) · ϕ(x) dx = −

�
usj (x) divsj ϕ(x) dx,

and passing to the limit as j →∞, having in mind that both usj and divsj ϕ
are strongly convergent (Corollary 5.1.2), we obtain

�
V (x) · ϕ(x) dx = −

�
u(x) divϕ(x) dx,

and hence Du = V and u ∈ W 1,p(Rn). Since this V is unique, this shows
that Dsjusj ⇀ V in Lp(Rn,Rn) as j → ∞ without the need of taking a
subsequence. This �nishes the proof.

5.3 Weak continuity of the minors for varying s

In this section we prove the analogue in this context of the weak continuity
of minors, namely, that if we have a sequence {us}s∈(0,1) such that us ∈ Hs,p

for each s and Dsus ⇀ Du in Lp as s↗ 1 for some u ∈W 1,p then the minors
of Dsus converge weakly in some Lq to the minors of Du. For this, we follow
the general guidelines of Section 4.2, where the analogue convergence for a
�xed s is proved.

The following result is the key to adapt the continuity of minors of The-
orem 4.2.2 to our case. It establishes the relationship between the operators
Ks
ϕ and Dϕ when s↗ 1.
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Lemma 5.3.1. Let p > 1 and 0 < s < 1. Let ϕ ∈ C∞c (Rn) and w ∈
Lp(Rn,Rn×n). Consider a family {ws}s∈(0,1) in L

p(Rn,Rn×n) such that ws ⇀
w in Lp(Rn,Rn×n) as s↗ 1. Then, for all r ∈ (1, p],

Ks
ϕ(ws) ⇀ wDϕ in Lr(Rn,Rn) as s↗ 1.

Proof. Assume �rst that ws ∈ W 1,p(Rn,Rn×n) for all s ∈ (0, 1). Fix two
indexes 1 ≤ i, j ≤ n, let us be the (i, j)-th entry of ws and let u be the (i, j)-
th entry of w. Let θ ∈ C∞c (Rn). We apply the product formula of Lemma
3.3.6 and then Proposition 3.2.4 to obtain�
θKs

ϕ(usI) =

�
θ Ds(ϕus)−

�
θ ϕDsus = −

�
ϕus divs θ+

�
us divs(θϕ).

Now we have from Corollary 5.1.2 that divs θ → div θ and divs(θϕ) →
divs(θϕ) in Lq(Rn) for every q ∈ (1,∞) as s ↗ 1. As us ⇀ u in Lp(Rn)
we obtain�

θKs
ϕ(usI)→ −

�
ϕudiv θ +

�
udiv(θϕ) =

�
θ uDϕ.

This shows that Ks
ϕ(usI) ⇀ uDϕ in the sense of distributions. Now, by

Lemma 3.3.2, for every r ∈ (1, p]∥∥Ks
ϕ(usI)

∥∥
r
≤ C ‖us‖p ≤ C1

for some C,C1 > 0 independent of s, which implies that Ks
ϕ(usI) ⇀ uDϕ in

Lr(Rn).
Now, we remove the assumption ws ∈ W 1,p(Rn). Fix r ∈ (1, p]. For each

s ∈ (0, 1), let vs ∈ W 1,p(Rn) be such that ‖us − vs‖r ≤ 1 − s. By Lemma
3.3.2,

‖Ks
ϕ(usI)−Ks

ϕ(vsI)‖r = ‖Ks
ϕ(usI − vsI)‖r ≤ C‖us − vs‖p → 0,

which implies that Ks
ϕ(usI) ⇀ uDϕ in Lr(Rn). In other words, for each

j ∈ {1, . . . , n}, the family of functions

x 7→ cn,s

�
ϕ(x)− ϕ(y)

|x− y|n+s
us(y)

xj − yj
|x− y|

dy

converges weakly to u(Dϕ)j as s↗ 1. Therefore, for each i ∈ {1, . . . , n}, the
family of functions

x 7→
(
Ks
ϕ(ws)

)
ij

(x) =
n∑
j=1

cn,s

�
ϕ(x)− ϕ(y)

|x− y|n+s
(ws)ij(y)

xj − yj
|x− y|

dy

converges weakly to
∑n

j=1wij(Dϕ)j = (wDϕ)i. This concludes the proof.

135



Chapter 5. Γ- convergence of polyconvex functionals depending on the

fractional gradient when s goes to 1

The following is the main result of this section, and shows the weak con-
vergence of the minors of Dsus to those of Du, whenever us converges weakly
to u. Of course, by a minor we mean the determinant of a submatrix. Its
proof is an adaptation of Theorem 4.2.2 and we will use again the notation
from De�nition 4.1.1.

Theorem 5.3.2. Let p ≥ n − 1 and 0 < s < 1. Let g ∈ W 1,p(Rn,Rn) and
u ∈W 1,p(Rn,Rn). Let {us}s∈(0,1) be a family such that us ∈ Hs,p

g (Ω,Rn) for
each s ∈ (0, 1), while us → u in Lp(Rn,Rn) and Dsus ⇀ Du in Lp(Rn,Rn×n)
as s↗ 1. Then

a) If k ∈ N with 1 ≤ k ≤ n− 2 and µ is a minor of order k then µ(Dsus) ⇀
µ(Du) in L

p
k (Rn) as s↗ 1.

b) If cof Dsus ⇀ ϑ in Lq(Rn,Rn×n) as s ↗ 1 for some q ∈ [1,∞) and
ϑ ∈ Lq(Rn,Rn×n) then ϑ = cof Du.

c) Assume detDsus ⇀ θ in L`(Rn) as s ↗ 1 for some ` ∈ [1,∞) and some
θ ∈ L`(Rn). If p < n assume, in addition, that cof Dsus ⇀ cof Du in
Lq(Rn,Rn×n) as s↗ 1 for some q ∈ ( p∗

p∗−1 ,∞). Then θ = detDu.

Proof. We will prove a) by induction on k. For k = 1 there is nothing to
prove. Assume it holds for some k ≤ n − 3 and let us prove it for k +
1. Let µ be a minor of order k + 1. In the notation of De�nition 4.1.1,
µ(F ) = det[F ]M for all F ∈ Rn×n, where [·]M = [·]Mi1,...,ik+1;j1,...,jk+1

for some
1 ≤ i1 < · · · < ik+1 ≤ n and 1 ≤ j1 < · · · < jk+1 ≤ n. Let ϕ ∈ C∞c (Rn). By
induction assumption, cof[Dsus]M ⇀ cof[Du]M in L

p
k (Rn,R(k+1)×(k+1)) as

s↗ 1, so [cof[Dsus]M ]M̄ ⇀ [cof[Du]M ]M̄ in L
p
k (Rn,Rn×n). By Lemma 5.3.1,

Ks
ϕ([cof[Dsus]M ]M̄ ) ⇀ [cof[Du]M ]M̄ Dϕ in Lr(Rn,Rn) for every r ∈ (1, pk ].

By Theorem 5.2.2, [us]Ñ → [u]Ñ in Lp(Rn), so

[us]Ñ ·K
s
ϕ([cof[Dsus]M ]M̄ ) ⇀ [u]Ñ · ([cof[Du]M ]M̄ Dϕ) in L1(Rn) (5.12)

since k
p + 1

p ≤ 1. Now, the nonlocal integration by parts for the determinant
given in Lemma 4.2.1 as well as the classical (local) one state that

− 1

k

�
[us]Ñ (x) ·Ks

ϕ([cof[Dsus]M ]M̄ )(x) dx =

�
det[Dsus(x)]M ϕ(x) dx

(5.13)
and

− 1

k

�
[u]Ñ (x) · ([cof[Du]M ]M̄ (x)Dϕ(x)) dx =

�
det[Du(x)]M ϕ(x) dx,

(5.14)
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respectively, so

�
det[Dsus(x)]M ϕ(x) dx→

�
det[Du(x)]M ϕ(x) dx. (5.15)

This shows that det[Dsus]M ⇀ det[Du]M in the sense of distributions. As
{det[Dsus]M}s∈(0,1) is bounded in L

p
k+1 (Rn) and p > k + 1, we have that

det[Dsus]M ⇀ det[Du]M in L
p
k+1 (Rn) as s↗ 1.

The proof of b) follows the lines of a). Let µ be a minor of order n−1. As
before, µ(F ) = det[F ]M for all F ∈ Rn×n, where [·]M = [·]Mi1,...,in−1;j1,...,jn−1

for some 1 ≤ i1 < · · · < in−1 ≤ n and 1 ≤ j1 < · · · < jn−1 ≤ n. Let φ ∈
C∞c (Ω). By part a), cof[Dsuj ]M ⇀ cof[Dsu]M in L

p
n−2 (Rn,R(n−1)×(n−1)),

so [cof[Dsus]M ]M̄ ⇀ [cof[Du]M ]M̄ in L
p

n−2 (Rn,Rn×n). By Lemma 5.3.1,
Ks
ϕ([cof[Dsus]M ]M̄ ) ⇀ [cof[Du]M ]M̄ Dϕ in Lr(Rn,Rn) for every r ∈ (1, p

n−2 ].
By Theorem 5.2.2, [us]Ñ → [u]Ñ in Lp(Rn), so convergence (5.12) is also
valid since n−2

p + 1
p ≤ 1. Again thanks to (5.13)�(5.14), we conclude that

convergence (5.15) holds. This shows that µ(Dsus) ⇀ µ(Du) in the sense
of distributions. As this is true for every minor µ of order n − 1, we obtain
that cof Dsus ⇀ cof Du in the sense of distributions. Due to the assumption,
ϑ = cof Du.

We �nally show part c). Let φ ∈ C∞c (Ω). Assume �rst p < n. By the
assumption and Lemma 5.3.1, Ks

ϕ(cof Dsus) ⇀ cof DuDϕ in Lr(Rn,Rn) for
every r ∈ (1, q]. By Theorem 5.2.2, us → u in Lt(Rn) for every t ∈ [p, p∗), so

us ·Ks
ϕ(cof Dsus) ⇀ u · (cof DuDϕ) in L1(Rn) (5.16)

since 1
q + 1

p∗ < 1.

Assume now p ≥ n. Then {cof Dsus}s∈(0,1) is bounded in L
p

n−1 (Rn,Rn×n)

so, thanks to part b), cof Dsus ⇀ cof Du in L
p

n−1 (Rn,Rn×n). By Lemma
5.3.1, Ks

ϕ(cof Dsus) ⇀ cof DuDϕ in Lr(Rn,Rn) for every r ∈ (1, p
n−1 ]. By

Theorem 5.2.2, us → u in Lt(Rn) for every t ∈ [1,∞), so convergence (4.31)
holds since p > n− 1.

In either case, we have convergence (5.16), so by the analogue of (5.13)�
(5.14) with k = n we obtain

�
detDsus(x)ϕ(x) dx→

�
detDu(x)ϕ(x) dx.

This shows that detDsus ⇀ detDu in the sense of distributions, so θ =
detDu.
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5.4 Γ-convergence

Γ-convergence is the main conceptual tool for studying the variational conver-
gence of families of functionals de�ned on metric spaces [29]. In this section
we show that the functional

Is(u) =

�
W (x, u(x), Dsu(x)) dx,

de�ned on Hs,p(Rn,Rn), Γ-converges, as s↗ 1, to the functional

I(u) =

�
W (x, u(x), Du(x)) dx,

de�ned on W 1,p(Rn,Rn) under the assumption of W being polyconvex. We
recall (again, see Section 4.3)the concept of polyconvexity (see, e.g, [10, 39]).
Let τ be the number of submatrices of an n × n matrix. We �x a function
~µ : Rn×n → Rτ such that ~µ(F ) is the collection of all minors of an F ∈ Rn×n in
a given order. A function W0 : Rn×n → R∪{∞} is polyconvex if there exists
a convex Φ : Rτ → R ∪ {∞} such that W0(F ) = Φ(~µ(F )) for all F ∈ Rn×n.
Polyconvexity of W : Rn × Rn × Rn×n → R ∪ {∞} means polyconvexity in
the last variable.

It is convenient to consider both Is and I de�ned on the same functional
space independent of s, so we consider both functionals de�ned on Lp(Rn,Rn).
The extension of Is to Lp(Rn,Rn) \ Hs,p(Rn,Rn) and of I to Lp(Rn,Rn) \
W 1,p(Rn,Rn) is done by in�nity. Recalling the de�nition of Γ-convergence
in this particular situation, we say that Is Γ-converges to I as s ↗ 1 in the
strong topology of Lp(Rn,Rn) if the following two conditions hold:

� Liminf inequality: For every family {us}s∈(0,1) in L
p(Rn,Rn) such that

us → u in Lp(Rn,Rn) as s↗ 1, we have

I(u) ≤ lim inf
s↗1

Is(us).

� Limsup inequality: For each u ∈ W 1,p(Rn,Rn), there exists a family
{us}s∈(0,1) ⊂ Lp(Rn,Rn) such that us → u in Lp(Rn,Rn) as s↗ 1 and

lim sup
s↗1

Is(us) ≤ I(u).

Although not in the de�nition of Γ-convergence, it is customary to attach
a compactness property to the conditions above, which, in this context, reads
as follows:

138



Section 5.4. Γ-convergence

� Compactness: For every g ∈W 1,p(Rn,Rn) and every family {us}s∈(0,1)

with us = g in Ωc for all s ∈ (0, 1) such that lim infs↗1 Is(us) < ∞,
there exist an increasing sequence {sj}j∈N in (0, 1) with limj→∞ sj = 1
and a u ∈ Lp(Rn,Rn) such that usj → u in Lp(Rn,Rn) as j →∞.

The limsup inequality will be a consequence of Theorem 5.1.1, while the
compactness property will follow of Theorem 5.2.2. The liminf inequality,
on the other hand, is a novel semicontinuity result, which improves that of
Theorem 4.3.1 done for a �xed s, and is singled out in the following proposi-
tion. As we will see, the growth conditions for proving the liminf and limsup
inequalities are compatible only in the range p > n.

Proposition 5.4.1. Let p ≥ n − 1 satisfy p > 1 and 0 < s < 1. Let Ω be a
bounded open subset of Rn and g ∈W 1,p(Rn,Rn). Let W : Rn×Rn×Rn×n →
R ∪ {∞} satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable, where Ln denotes the Lebesgue sigma-
algebra in Rn, whereas Bn and Bn×n denote the Borel sigma-algebras in
Rn and Rn×n, respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Rn and every y ∈ Rn, the function W (x, y, ·) is polyconvex.

d) There exist a constant c > 0, an a ∈ L1(Rn) and a Borel function h :
[0,∞)→ [0,∞) such that

lim
t→∞

h(t)

t
=∞

and, for some q > p∗

p∗−1 if p < n,
W (x, y, F ) ≥ a(x) + c |F |p + c |cof F |q + h(|detF |), if p < n,

W (x, y, F ) ≥ a(x) + c |F |p + h(|detF |), if p = n,

W (x, y, F ) ≥ a(x) + c |F |p , if p > n,

for a.e. x ∈ Rn, all y ∈ Rn and all F ∈ Rn×n.

For each s ∈ (0, 1), let us ∈ Hs,p
g (Ω,Rn) and u ∈W 1,p(Ω,Rn) satisfy us → u

in Lp(Ω,Rn) as s↗ 1. Then

I(u) ≤ lim inf
s↗1

Is(us) (5.17)
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Proof. We can assume that

lim inf
s↗1

Is(us) <∞, (5.18)

hence by assumption d), there exists an increasing sequence {sj}j∈N in (0, 1)
with limj→∞ sj = 1 such that lim infs↗1 Is(us) = limj→∞ Isj (usj ) and the
sequence {Dsjusj}j∈N is bounded in Lp(Rn,Rn), so by Theorem 5.2.2, for a
subsequence (not relabelled),

usj → u and Dsjusj ⇀ Du in Lp as j →∞. (5.19)

By Theorem 4.2.2, for any minor µ of order k ≤ n− 2, we have that

µ(Dsjusj ) ⇀ µ(Du) in L
p
k (Rn) as j →∞. (5.20)

If p < n then, {cof Dsus}0<s<1 is bounded in Lq(Rn,Rn×n) by assump-
tion d), whereas if p ≥ n we set q := p

n−1 and have that {cof Dsus}0<s<1 is
bounded in Lq(Rn,Rn×n). In either case we have that q > 1, so for a subse-
quence {cof Dsjusj}j∈N converges weakly in Lq(Rn,Rn×n) and, by Theorem
4.2.2,

cof Dsjusj ⇀ cof Du in Lq(Rn,Rn×n) as j →∞. (5.21)

If p ≤ n then, by assumption d) and de la Vallée Poussin's criterion,
{detDsus}0<s<1 is equiintegrable, whereas if p > n, {detDsus}0<s<1 is
bounded in L

p
n (Rn) and p

n > 1. In either case we have that, for a subse-
quence, {detDsjusj}j∈N converges weakly in L`(Rn) with{

` = 1 if p ≤ n,
` = p

n if p > n,

and, hence, by Theorem 4.2.2,

detDsjusj ⇀ detDu in L`(Rn) as j →∞. (5.22)

Convergences (5.19)�(5.22) imply, thanks to a standard lower semicon-
tinuity result for polyconvex functionals (see, e.g., [15, Th. 5.4] or [59, Th.
7.5]), that for any R > 0,

�
B(0,R)

W (x, u(x), Du(x)) dx ≤ lim inf
j→∞

�
B(0,R)

W (x, usj (x), Dsjusj (x)) dx.

(5.23)
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Therefore, �
B(0,R)

[W (x, u(x), Du(x))− a(x)] dx ≤

lim inf
j→∞

� [
W (x, usj (x), Dsjusj (x))− a(x)

]
dx.

By monotone convergence,�
[W (x, u(x), Du(x))− a(x)] dx ≤

lim inf
j→∞

� [
W (x, usj (x), Dsjusj (x))− a(x)

]
dx,

so
I(u) ≤ lim inf

j→∞
Isj (usj ),

as desired.

We �nally present the main result of this section, which shows the Γ-
convergence of polyconvex functionals de�ned on Bessel spaces, involving s-
fractional gradients, to a classical local polyconvex functional de�ned on a
Sobolev space. Unfortunately, we crucially need the extra assumption p >
n in order to prove the limsup inequality. This is because the coercivity
conditions of W in Proposition 5.4.1 are compatible with the standard upper
bound by |F |p (which makes the functional I continuous in W 1,p; see [39])
only in the case p > n.

Theorem 5.4.2. Let p > n and 0 < s < 1. Let Ω be a bounded open subset
of Rn and g ∈ W 1,p(Rn,Rn). Let W : Rn × Rn × Rn×n → R ∪ {∞} satisfy
the following conditions:

a) W is Ln × Bn × Bn×n-measurable.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Rn and every y ∈ Rn, the function W (x, y, ·) is polyconvex.

d) Assume there exist c > 0 and a ∈ L1(Rn) such that

W (x, y, F ) ≥ a(x) + c |F |p , a.e. x ∈ Rn, all y ∈ Rn, all F ∈ Rn×n,

and for every R > 0 there exist aR ∈ L1(Rn) and cR > 0 such that for a.e.
x ∈ Rn, all y ∈ Rn with |y| ≤ R and all F ∈ Rn×n,

W (x, y, F ) ≤ aR(x) + cR |F |p .
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fractional gradient when s goes to 1

The following statements hold:

i) For each s ∈ (0, 1), let us ∈ Hs,p
g (Ω,Rn) satisfy

lim inf
s↗1

Is(us) <∞. (5.24)

Then there exist u ∈W 1,p
g (Ω,Rn) and an increasing sequence {sj}j∈N in

(0, 1) with limj→∞ sj = 1 such that usj → u in Lp(Rn,Rn) as j →∞.

ii) For each s ∈ (0, 1), let us ∈ Hs,p
g (Ω,Rn) and u ∈ W 1,p(Rn,Rn) satisfy

us → u in Lp(Rn,Rn). Then

I(u) ≤ lim inf
s↗1

Is(us).

iii) For each u ∈ W 1,p
g (Ω,Rn) and s ∈ (0, 1), there exists us ∈ Hs,p

g (Ω,Rn)
such that us → u in Lp(Rn,Rn) and

lim sup
s↗1

Is(us) ≤ I(u). (5.25)

Proof. For proving i), just notice that by assumption d), (5.24) implies that
there is an increasing sequence {sj}j∈N in (0, 1) with limj→∞ sj = 1 such that
{Dsjusj}j∈N is bounded in Lp(Rn,Rn). Therefore, by Theorem 5.2.2, there

exists u ∈ W 1,p
g (Ω,Rn) such that, for a subsequence usj → u in Lp(Rn,Rn)

as j →∞.
Part ii) is a particular case of Proposition 5.4.1.
Finally we show iii), so we let u ∈ W 1,p

g (Ω,Rn). By Theorem 5.1.1,
Dsu → Du in Lp(Rn,Rn×n) as s ↗ 1. Assumption c) implies in particular
the continuity of W (x, y, ·) for a.e. x ∈ Rn and all y ∈ Rn (see, e.g., [39]).
The Sobolev embedding shows that u is bounded. By the growth conditions
and dominated convergence,

lim
s↗1

�
W (x, u,Dsu) =

�
W (x, u,Du), (5.26)

which proves (5.25).

Although the bulk of this section has been focused on the assumption of
polyconvexity, with the stronger assumption of convexity we can achieve the
analogue result of Theorem 5.4.2 for the full range of exponents p ∈ (1,∞).
Since the proof is analogous (and in some steps, simpler) than that of Theorem
5.4.2, it will only be sketched.
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Theorem 5.4.3. Let 1 < p < ∞ and 0 < s < 1. Let Ω be a bounded open
subset of Rn and g ∈ W 1,p(Rn,Rn). Let W : Rn × Rn × Rn×n → R ∪ {∞}
satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Rn and every y ∈ Rn, the function W (x, y, ·) is convex.

d1) If p < n assume there exist c ≥ 1 and a ∈ L1(Rn) such that for a.e.
x ∈ Rn, all y ∈ Rn and all F ∈ Rn×n,

−a(x) +
1

c
|F |p ≤W (x, y, F ) ≤ a(x) + c

(
|y|p + |y|p

∗
+ |F |p

)
.

d2) If p = n assume there exist r ∈ [p,∞), c ≥ 1 and a ∈ L1(Rn) such that
for a.e. x ∈ Rn, all y ∈ Rn and all F ∈ Rn×n,

−a(x) +
1

c
|F |p ≤W (x, y, F ) ≤ a(x) + c (|y|p + |y|r + |F |p) .

d3) If p > n assume there exist c > 0 and a ∈ L1(Rn) such that

W (x, y, F ) ≥ a(x) + c |F |p , a.e. x ∈ Rn, all y ∈ Rn, all F ∈ Rn×n,

and for every R > 0 there exist aR ∈ L1(Rn) and cR > 0 such that for a.e.
x ∈ Rn, all y ∈ Rn with |y| ≤ R and all F ∈ Rn×n,

W (x, y, F ) ≤ aR(x) + cR |F |p .

Then, statements i)�iii) of Theorem 5.4.2 hold.

Proof. The proof of i) is the same as that of Theorem 5.4.2.
For the proof of ii) we initially follow that of Proposition 5.4.1. We can

assume inequality (5.18), so there exists an increasing sequence {sj}j∈N in
(0, 1) with limj→∞ sj = 1 such that lim infs↗1 Is(us) = limj→∞ Isj (usj ) and
the sequence {Dsjusj}j∈N is bounded in Lp(Rn,Rn). By Theorem 5.2.2, for
a subsequence, convergences (5.19) hold. By a standard lower semicontinuity
result for convex functionals (see, e.g., [59, Th. 7.5]), for any R > 0, inequality
(5.23) holds, and we conclude (5.17) as in Proposition 5.4.1.

In order to show iii) we apply Theorem 5.1.1 and obtain Dsu → Du in
Lp(Rn,Rn×n) as s↗ 1. Assumption c) implies in particular the continuity of
W (x, y, ·) for a.e. x ∈ Rn and all y ∈ Rn. The Sobolev embedding in the three
cases (p < n, p = n and p > n) shows that the growth conditions allow us to
apply dominated convergence and conclude inequality (5.26), as desired.
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A nonlocal model of hyperelasticity
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Chapter 6.

Nonlocal framework on

bounded domains

As a quick recapitulation, we have commented on the increased prominence
of nonlocal models in the last decades, for which it is required a thorough
mathematical analysis of the new objects and operators involved. We have
already analysed some of them in this document. In Part I we have studied
the localization of the nonlinear bond-based model of peridynamics. Then,
in Part II we have considered the study of fractional spaces and functionals
based on the s-fractional gradient, an operator that generalizes the classical
gradient to a degree of di�erentiability beyond derivatives of natural order.
Now, this Part III, which encompasses the results from the in preparation
articles [18,19], intends to �x the following drawbacks of some nonlocal models
in Solid Mechanics. First, in Part I it was showed that the model with energy
functional

I(u) =

�
Ω

�
Ω∩B(x,δ)

w(x− y, u(x)− u(y)) dydx

does not �t in nonlinear Solid Mechanics. Secondly, in Part II we analysed
fractional variational problems substituting the classical gradient by the one
from De�nition 3.1.2:

I(u) =

�
Rn
W (x, u(x), Dsu(x)) dx.

In these functionals, contrary to hyperelastic modelling, the fractional gra-
dient Ds and the energy functional I are de�ned over the whole space Rn.
This presents a drawback regarding Solid Mechanics, where it is required to
work with bounded domains. Furthermore, this restricts substantially the
possibility of working with a wider range of boundary conditions.
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Therefore, with these observations in mind and so as to approach the
study of a proper model in Solid Mechanics, we would like to study variational
models based on an alternative di�erential operator. In particular, we will
work with

Ds
δu(x) = cn,s

�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

w(|x− y|)
|x− y|n+s−1

dy, (6.1)

for u ∈ C∞c (Rn), where the nonlocal kernel considered is the Riesz potential
multiplied by a cut-o� function w, so it keeps the index s of the fractional
di�erentiability, but it also gives rise to an operator acting over bounded
domains in contrast to the fractional gradient (3.7). Similar operators have
already been studied in works like [82,84], where (6.1) could �t after normal-
izing its kernel. It has also been shown in [84] that this kind of operators
also converges to the classical gradient when the nonlocality vanishes. Thus,
among all the properties mentioned at the introduction of Chapter 3 in order
to characterise the fractional gradient, the one that is not ful�lled by (6.1) is
the s-homogeneity under dilations, in favour of considering bounded domains.

In our case, we have decided to �x as support for such kernel the ball
B(0, δ) of radius δ > 0 (a small distance), since our main motivation comes
from Peridynamics, where interaction between particles is assumed to be neg-
ligible when they are further away than a certain distance δ, known as the
horizon distance of interaction of particles. Peridynamics is a nonlocal alter-
native model in Solid Mechanics proposed by Silling in [103,107] (see Section
1.3), whose goal is to unite in one model elastic deformations as well as singu-
larity phenomena such as fractures. Although the development of this theory
in the last years has been impressive, most of the work until now is on linear
elastic models [82,83]. A �rst attempt to rigorously extend this nonlocal the-
ory for a general nonlocal nonlinear model was made in [23�25], but in [20]
(Part I) was shown that it did not meet its modelling goal in Solid Mechanics.

All these considerations will imply a slight rede�nition of the functional
space in this nonlocal framework, as well as another look to certain properties
such as integration by parts [21, 84] or the search of new Poincaré�Sobolev
inequality and compact embedding results.

The outline of the chapter is the following. In Section 6.1 the new ver-
sions of nonlocal gradient and functional space are established as well as the
corresponding version of the nonlocal integration by parts. Then, in Section
6.2 several formulas are computed, such as the nonlocal derivatives of a prod-
uct, the symmetry of the second derivative, or a relevant linear operator Ks,δ

ϕ

similar to the one that appeared in Part II. Section 6.3 leads to the process
of obtaining a nonlocal version of the Fundamental Theorem of Calculus, a
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key and relevant ingredient for the following results. Then in Section 6.4 it
is proved a new nonlocal version of the Poincaré�Sobolev inequality, which,
along with a nonlocal mean value theorem, give rise to the compact embedding
result. At the end of this chapter some comments regarding the fractional
and nonlocal gradients are shown as well as di�erent notions for a nonlocal
laplacian.

In the next and last chapter, the existence of minimizers of nonlocal energy
functionals is shown. First, it is done in the scalar case under the convexity
assumption. Then the Euler-Lagrane equation are shown. Finally we prove,
using the nonlocal Piola identity, the existence of minimizers of vector varia-
tional problems under polyconvexity (weaker the convexity), a result which is
compatible with the existence of function exhibiting singularities of fracture
and cavitation type.

6.1 Functional analysis framework

In this section we state the de�nitions and basic properties of the nonlocal
gradient and divergence, as well as the natural functional space associated to
them.

The framework is the following. As typical in nonlocal models, `boundary'
conditions are usually of volumetric type. In our case, we �x a distance
δ > 0 and consider a bounded domain Ω ⊂ Rn. The set Ω itself is regarded
as a nonlocal interior domain, while Ωδ := Ω + B(0, δ) is considered as its
nonlocal closure. Accordingly, the set ΩB,δ := Ωδ\Ω plays the role of nonlocal
boundary. We write B(x, r) to denote the open ball centred at x of radius r.

Ω

Ωδ \ Ω

Ωδ

δ

The set Ω−δ = {x ∈ Ω : dist(x, ∂Ω) > δ} will also be relevant.
Similarly as in [84], the nonlocal operators are based on an integral kernel.

As mentioned in the introduction, we will consider

ρδ(x̃) =
1

γ(1− s)|x̃|n+s−1
wδ(x̃),
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with 0 < s < 1, where the constant γ(s) is given by

γ(s) =
π
n
2 2sΓ

(
s
2

)
Γ
(
n−s

2

) (6.2)

and Γ is Euler's gamma function. We assume the following conditions over
the cut-o� function wδ:

a) Smoothness: wδ is a non negative radial function such that wδ ∈ C∞c (B(0, δ)).

b) Cut-o�: There are constants a0 > 0 and 0 < b0 < 1 such that 0 ≤ wδ ≤ a0

with wδ = a0 in B(0, b0δ) and wδ = 0 in B(0, δ)c.

c) wδ(x) ≥ wδ(y) if |x| ≤ |y|.

d)
�
B(0,δ) ρδ(x̃) dx̃ = 1.

The radial representation of wδ is denoted by w̄δ.
After this introduction we proceed by setting the de�nition of principal

value. Let Ω ⊂ Rn be a bounded domain, then given a function f : Ω → R
and x ∈ Ω such that f ∈ L1(Ω \B(x, r)) for every r > 0, the principal value
centred at x of

�
Ω f , denoted by

pvx

�
Ω
f

is de�ned as

lim
r→0

�
Ω\B(x,r)

f,

whenever this limit exists.
As we did in the fractional case (see Part II), in order to avoid the prin-

cipal value, we �rst establish the de�nition of nonlocal gradient for smooth
functions. The de�nitions of the nonlocal gradient and divergence are the
following. We also recall the de�nition of the constant cn,s appearing in Def-
inition 3.1.1.

De�nition 6.1.1. Let 0 < s < 1, 0 < δ and set

cn,s :=
n+ s− 1

γ(1− s)
.

a) Let u ∈ C∞c (Rn). Then, for every x ∈ Ω the nonlocal gradient Ds
δu is

de�ned as

Ds
δu(x) = cn,s

�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy. (6.3)
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b) Let φ ∈ C∞c (Rn,Rn). The nonlocal divergence is de�ned, for x ∈ Ω, as

divsδ φ(x) = −pvx cn,s

�
B(x,δ)

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy.

Notice that the integral in (6.3) is absolutely convergent. On the other
hand, by odd symmetry,

−pvx

�
B(x,δ)

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy =

�
B(x,δ)

φ(x)− φ(y)

|x− y|
· x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy

(6.4)

and this last integral is absolutely convergent.
Note also that, for each x ∈ Ω,

�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy =

�
Ωδ

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy,

and similarly for the integral in (6.4), since B(x, δ) ⊂ Ωδ and suppwδ ⊂
B(0, δ).

De�nition 6.1.1 a) naturally extends to vector �elds as shown in [84].
Given u ∈ C∞c (Ωδ,Rm) measurable and the same setting of De�nition 6.1.1,
its nonlocal gradient is

Ds
δu(x) = cn,s

�
B(x,δ)

u(x)− u(y)

|x− y|
⊗ x− y
|x− y|

wδ(|x− y|)
|x− y|n+s−1

dy ∀x ∈ Ω, (6.5)

Here, ⊗ stands for the usual tensor product of vectors.
Analogously, if M : Rn → Rn×n is such that its rows satisfy the assump-

tions of De�nition 3.1.1, we denote by DivsδM the column vector-function
whose components are the s-nonlocal divergences of each row of M .

The operators of De�nition 6.1.1 act as dual operators an integration by
parts. Many earlier versions of a nonlocal integration by parts have been
proved in di�erent contexts. For the purposes of this work, we will use a
particular case of [84, Th. 1.4], which, for convenience, we restate here in our
language.
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Theorem 6.1.1. Assume u ∈ C∞c (Rn) and φ ∈ C∞c (Rn,Rn). Then
�

Ω

�
Ω

u(x)− u(y)

|x− y|
x− y
|x− y|

· φ(x)ρδ(x− y) dy dx =

�
Ω
u(x) pvx

�
Ω

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx.

The integration by parts formula suitable in our context is the following.

Theorem 6.1.2. Let 0 < s < 1 and 0 < δ. Suppose that u ∈ C∞c (Rn) and
φ ∈ C∞c (Ω,Rn). Then Ds

δu ∈ L∞(Ω,Rn) and divsδ φ ∈ L∞(Ω). Moreover,
�

Ω
Ds
δu(x) · φ(x) dx =

−
�

Ω
u(x) divsδ φ(x) dx− (n+ s− 1)

�
Ω

�
ΩB,δ

u(y)φ(x)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx.

Proof. Denoting by L > 0 the Lipschitz constant of u, we have, for each
x ∈ Ω,

|Ds
δu(x)| ≤ cn,sL

�
B(x,δ)

wδ(x− y)

|x− y|n+s−1
dy = (n+ s− 1)L,

so Ds
δu ∈ L∞(Ω,Rn). Analogously, the integral of the right-hand side of (6.4)

is absolutely convergent and divsδ φ ∈ L∞(Ω).
We have�

Ω
Ds
δu(x)·φ(x) dx = (n+s−1)

�
Ω

�
Ωδ

u(x)− u(y)

|x− y|
x− y
|x− y|

ρδ(x−y)·φ(x) dy dx

with �
Ω

�
Ωδ

u(x)− u(y)

|x− y|
x− y
|x− y|

ρδ(x− y) · φ(x) dy dx =

�
Ω

�
Ω

u(x)− u(y)

|x− y|
x− y
|x− y|

ρδ(x− y) · φ(x) dy dx +

�
Ω

�
ΩB,δ

u(x)− u(y)

|x− y|
x− y
|x− y|

ρδ(x− y) · φ(x) dy dx.

By Theorem 6.1.1,�
Ω

�
Ω

u(x)− u(y)

|x− y|
x− y
|x− y|

· φ(x)ρδ(x− y) dy dx =

�
Ω
u(x) pvx

�
Ω

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx.
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On the other hand,

−
�

Ω
u(x) divsδ φ(x) dx =

(n+ s− 1)

�
Ω
u(x) pvx

�
B(x,δ)

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx,

with

pvx

�
B(x,δ)

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy =

pvx

�
Ω

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy+

pvx

�
ΩB,δ

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy.

Now, for each x ∈ Ω,

pvx

�
ΩB,δ

φ(x) + φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy =

�
ΩB,δ

φ(x)− φ(y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy =

�
ΩB,δ

φ(x)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy

and these last two integrals are absolutely convergent.
Putting together the formulas above, we obtain the conclusion.

Note that the minus sign in the boundary term makes sense since the
vector x− y points inwards.

We now extend De�nition 6.1.1 a) to a broader class of functions.

De�nition 6.1.2. Let 0 < s < 1, 0 < δ and 1 ≤ p < ∞. Let u ∈ L1(Ωδ)
be such that there exists a sequence of {uj}j∈N ⊂ C∞c (Rn) converging to u
in L1(Ωδ) and for which {Ds

δuj}j∈N converges to some U in L1(Ω,Rn). We
de�ne Ds

δu as U .

The following result shows that the above de�nitions of Ds
δu is indepen-

dent of the sequence chosen.

Lemma 6.1.3. Let 0 < s < 1 and 0 < δ. Let u ∈ L1(Ωδ) be such that there
exist sequences {uj}j∈N and {vj}j∈N in C∞c (Rn) such that uj → u and vj → u
in L1(Ωδ), and for which {Ds

δuj}j∈N converges to some U and {Dsvj}j∈N
converges to some V in L1(Ω,Rn). Then U = V .
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Proof. Let φ ∈ C∞c (Ω,Rn). By Theorem 6.1.2
�

Ω
U · φ = lim

j→∞

�
Ω
Ds
δuj · φ =

− lim
j→∞

(�
Ω
uj divsδ φ +

(n+ s− 1)

�
Ω

�
ΩB,δ

uj(y)φ(x)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx

)
=

−

(�
Ω
udivsδ φ+ (n+ s− 1)

�
Ω

�
ΩB,δ

u(y)φ(x)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx

)
and, analogously,
�

Ω
V · φ =

−

(�
Ω
udivsδ φ+ (n+ s− 1)

�
Ω

�
ΩB,δ

u(y)φ(x)

|x− y|
· x− y
|x− y|

ρδ(x− y) dy dx

)
.

Thus, �
Ω
U · φ =

�
Ω
V · φ

for all φ ∈ C∞c (Ω,Rn), whence U = V .

The consideration of the nonlocal gradient as a single object with some
analogous properties to the classical one leads to the de�nition of a new func-
tional space similar to the Sobolev spaces W 1,p(Ω) and the Bessel fractional
spaces Hs,p(Rn).

De�nition 6.1.3. Let 1 ≤ p <∞, 0 < s < 1 and 0 < δ. We de�ne the space
Hs,p,δ(Ω) as

Hs,p,δ(Ω) := C∞c (Rn)
‖·‖

Hs,p,δ(Ω)

equipped with the norm

‖u‖Hs,p,δ(Ω) =
(
‖u‖pLp(Ωδ)

+ ‖Ds
δu‖

p
Lp(Ω)

) 1
p
.

As a consequence of the similarity in its de�nition, this space enjoys several
properties analogous to those of the aforementioned Sobolev spaces.

Proposition 6.1.4. Set 1 ≤ p < ∞, 0 < s < 1 and δ > 0. The space
Hs,p,δ(Ω) is a separable Banach space. Moreover, when p > 1 it is re�exive.
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Proof. That Hs,p,δ(Ω) is a Banach space is immediate since its has been
de�ned as a closure

For the rest of the proof, we apply a standard argument; see, for example,
[82, Theorem 2.1] for the nonlocal case and [32, Proposition 8.1] for the local
case.

We have that the space Fp = Lp(Ωδ;Rn)× Lp(Ω;Rn) is separable and, if
p > 1, it is re�exive. Now we de�ne the map T : Hs,p,δ(Ω)→ Fp by

T (u) =

(
u
Ds
δu

)
.

Then T is an isometry since

‖T (u)‖pFp = ‖u‖pLp(Ωδ)
+ ‖Ds

δu‖
p
Lp(Ω) = ‖u‖p

Hs,p,δ(Ω)
.

By De�nitions 6.1.2 and 6.1.3, it is clear that T (Hs,p,δ(Ω)) is a closed subspace
of Fp. Since every closed subspace of a re�exive space is re�exive (see, e.g., [32,
Proposition 3.20]) and every subset of a separable space is separable (e.g., [32,
Proposition 3.25]), it follows that T (Hs,p,δ(Ω)) is separable and, if p > 1, it
is re�exive. The conclusion follows since T is an isometry.

In the next result we compare the spaces Hs,p,δ(Ω) for di�erent exponents
p, as well as with the better-known Bessel space Hs,p(Rn).

Proposition 6.1.5. Let 1 ≤ p <∞ and 0 < s < 1.

a) Hs,p,δ(Ω) ⊂ Hs,q,δ(Ω) whenever p ≥ q ≥ 1.

b) Hs,p(Rn) ⊂ Hs,p,δ(Ω). In particular, there exists C > 0 such that for every
u ∈ Hs,p(Rn),

‖u‖Hs,p,δ(Ω) ≤ C‖u‖Hs,p(Rn).

Proof. The proof of a) is obtained in a straightforward manner applying the
known inclusions Lp(Ωδ) ⊂ Lq(Ωδ) and Lp(Ω) ⊂ Lq(Ω) to the norms of u and
Ds
δu.

Regarding b), we �rst prove the corresponding inequality for smooth func-
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tions. Thus, let u ∈ C∞c (Rn). We have that, for x ∈ Ω,

Ds
δu(x) =cn,s

�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy

=cn,sa0

�
Rn

u(x)− u(y)

|x− y|n+s

x− y
|x− y|

dy

− cn,s
�
Rn

u(x)− u(y)

|x− y|
x− y
|x− y|

a0 − wδ(x− y)

|x− y|n+s−1
dy

=a0D
su(x)− cn,s

�
B(x,b0δ)c

u(x)− u(y)

|x− y|
x− y
|x− y|

a0 − wδ(x− y)

|x− y|n+s−1
dy

=a0D
su(x) + cn,s

�
B(x,b0δ)c

u(y)

|x− y|
x− y
|x− y|

a0

|x− y|n+s−1
dy.

We recall that a0 and b0 are the constants from the de�nition of wδ and that
wδ = a0 in B(0, b0δ). We therefore have that

|Ds
δu(x)| ≤ a0 |Dsu(x)|+ a0 cn,s

�
B(x,b0δ)c

|u(y)|
|x− y|n+s

dy

≤ a0 |Dsu(x)|+ c1 ‖u‖Lp(B(x,b0δ)c)

for some constant c1 > 0. Consequently,

‖Ds
δu‖Lp(Ω) ≤ a0 ‖Dsu‖Lp(Ω) + c1|Ω|

1
p ‖u‖Lp(B(x,b0δ)c))

≤ c2 ‖u‖Hs,p(Rn)

for some constant c2 > 0. Since we also have that ‖u‖Lp(Ωδ) ≤ ‖u‖Lp(Rn), we
obtain that there exists C > 0 such that for every u ∈ C∞c (Rn),

‖u‖Hs,p,δ(Ω) ≤ C‖u‖Hs,p(Rn).

Being the spaces Hs,p,δ(Ω) and Hs,p(Rn) de�ned as the closure of C∞c (Rn)
with their respective norms, the result follows.

The inclusion from Proposition 6.1.5 b) gives a straightforward link with
Bessel fractional spaces. In particular, it implies that functions representing
fractures and cavitations, as those shown in Section 3.6 are also included in
Hs,p,δ(Ω). One of the advantages of the space Hs,p,δ(Ω) is that, contrary to
Hs,p(Rn), it allows us to deal with elementary functions, such as the identity,
which would be relevant in a future linearization process.

Apart from the operator Ds
δ of De�nitions 6.1.1 and 6.1.2, there are two

closely related operators that are similar to others used in the literature (see
[38,84]).
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De�nition 6.1.4. Let 0 < s < 1 and δ > 0.

a) Let u : Ωδ → R be a measurable function. For x ∈ Ω, we de�ne

D̃s
δu(x) := cn,s pvx

�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy,

whenever the principal value exists.

b) Let u ∈ Lp(Ωδ). Its distributional nonlocal gradient Dsδu is de�ned, for
φ ∈ C∞c (Ω,Rn), as

〈Dsδu, φ〉 :=−
�

Ω
u(x) divsδ φ(x) dx

− cn,s
�

Ω
φ(x)

�
ΩB,δ

u(y)

|x− y|
· x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy dx.

It is immediate to see that these three operators Ds
δ , D̃

s
δ , Dsδ coincide for

smooth functions. In this thesis we deal with Ds
δ and leave for a future work

to �nd out a broader class of functions for which they three coincide.
Finally, notice that, since we considered u ∈ C∞c (Ω) in De�nition 6.1.1,

the function Ds
δu, originally de�ned in Ω, also makes sense for points outside

Ω, with the same de�nition. With a small abuse of notation, we also denote
by Ds

δu the function in Rn de�ned as in (6.3).
Before getting to next section we recall the following de�nitions.

De�nition 6.1.5. We will say that

a) a function f : Rn → R is radial if there exists f̄ : R+
0 → R such that

f(x) = f̄(|x|) for every x ∈ Rn.

b) a radial function f : Rn → R is radially decreasing if its radial represen-
tation f̄ : R+

0 → R is a decreasing function.

c) a function φ : Rn → Rn is vector radial if there exists φ̄ : R+
0 → R such

that φ(x) = φ̄(|x|)x for every x ∈ Rn.

It is known (see, e.g., [66, App. B.5]) that the Fourier transform of a radial
(respectively, vector radial) function is radial (respectively, vector radial).
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Chapter 6. Nonlocal framework on bounded domains

6.2 Calculus in Hs,p,δ(Ω)

We start with a su�cient condition for the nonlocal gradient to be de�ned
everywhere. We recall that a0 is the constant appearing in the de�nition of
wδ.

Lemma 6.2.1. Let 1 ≤ p ≤ ∞ and 0 < δ. Then there exists a constant
C = C(n, a0) > 0 such that for all u ∈W 1,p(Ωδ). and 0 < s < 1,

‖Ds
δu‖Lp(Ω) ≤ Cδ1−s cn,s

1− s
‖Du‖Lp(Ωδ).

Consequently, there exists C ′ = C ′(n, a0, |Ω|) > 0 such that

‖Ds
δu‖Lr(Ω) ≤ C ′δ1−s cn,s

1− s
‖Du‖Lp(Ωδ)

for every r ∈ [1, p].

Proof. By density, it is enough to prove the equality for u ∈ C∞c (Rn).
First we consider 1 ≤ p < ∞, applying Minkowski's integral inequality

(see [110, App. A.1]) to the p-norm,(�
Ω

∣∣∣∣∣
�
B(x,δ)

u(x)− u(y)

|x− y|
x− y
|x− y|

wδ(x− y)

|x− y|n+s−1
dy

∣∣∣∣∣
p

dx

)1/p

≤

�
B(0,δ)

(�
Ω

(
|u(x)− u(x− h)|

|h|n+s
wδ(h)

)p
dx

)1/p

dh.

(6.6)

Now, for all h ∈ B(0, δ)\{0},(�
Ω

(
|u(x)− u(x− h)|

|h|n+s
wδ(h)

)p
dx

)1/p

≤ a0

|h|n+s

(�
Ω
|u(x)− u(x− h)|p dx

)1/p

≤ a0

|h|n+s−1
‖Du‖Lp(Ωδ)

(6.7)

where we have used that wδ is a bounded function (by a0 > 0) and a classic
inequality, [32, Proposition 9.3].

Thus, combining (6.6) and (6.7) we have that

‖Ds
δu‖Lp(Ω) ≤ cn,sa0‖Du‖Lp(Ω)

�
B(0,δ)

1

|h|n+s−1
dh

=
a0σn−1δ

1−scn,s
1− s

‖Du‖Lp(Ωδ)

(6.8)
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where σn−1 is the area of the unit sphere of Rn. Through a density argument,
(6.8) remains true for u ∈W 1,p(Ωδ).

If p = ∞, we apply (6.8) for q < ∞. Since for every f ∈ L∞(Ω),

‖f‖Lq(Ωδ) ≤ ‖f‖L∞(Ωδ)|Ωδ|
1
q , we can take a sequence {qm}m∈N such that

qm ↗∞ and

‖Ds
δu‖Lqm (Ω) → ‖Ds

δu‖L∞(Ω) and ‖Du‖Lqm (Ωδ) → ‖Du‖L∞(Ωδ).

Applying it in (6.8) we obtain

‖Ds
δu‖L∞(Ω) ≤

a0σn−1δ
1−scn,s

1− s
‖Du‖L∞(Ωδ).

Lemma 6.2.1 implies, in particular, that Ds
δϕ is de�ned everywhere for

ϕ ∈ C0,1(Ωδ). It also shows that W 1,p(Ωδ) ⊂ Hs,p,δ(Ω) for every 0 < s < 1
and 1 ≤ p <∞.

Next result is the analogous case in this framework of Lemma 3.3.2.

Lemma 6.2.2. Let 1 ≤ q <∞, 0 < δ and 0 < s < 1. Let ϕ ∈ C0,1(Ωδ) and

k ∈ N. Then, the operator Ks,δ
ϕ : Lr(Ωδ,Rk×n)→ Lq(Ω,Rk) de�ned as

Ks,δ
ϕ (U)(x) = cn,s

�
B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y)

x− y
|x− y|

wδ(x−y)dy, a.e. x ∈ Ω,

is linear and bounded, for every r ∈ [1, q], i.e. there exists a constant C1 =
C1(n, s, q, δ, r, wδ, |Ω|) > 0 such that

‖Ks,δ
ϕ (U)‖Lr(Ω,Rk) ≤ [ϕ]q

C0,1(Ωδ)
C1‖U‖Lq(Ωδ,Rn×k).

[ϕ]C0,1(Ωδ) denotes the Lipschitz semi-norm of ϕ.

Proof. Let U ∈ Lq(Ωδ,Rk×n). For a.e. x ∈ Ω we have∣∣∣Ks,δ
ϕ (U)(x)

∣∣∣ ≤ |cn,s| �
B(x,δ)

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)|wδ(x− y)dy,

so ∣∣∣Ks,δ
ϕ (U)(x)

∣∣∣q ≤ |cn,s|qg(x), (6.9)

with

g(x) :=

(�
B(x,δ)

|ϕ(x)− ϕ(y)|
|x− y|n+s

|U(y)|wδ(x− y)dy

)q
,
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Let [ϕ]C0,1(Ωδ) be the Lipschitz semi-norm of ϕ. Then, using that ϕ is Lips-
chitz and applying Hölder's inequality and the bound wδ(z) ≤ C0 for every
z ∈ Rn, we get

g(x) ≤ [ϕ]q
C0,1(Ωδ)

(�
B(x,δ)

|U(y)|
|x− y|n+s−1

wδ(x− y)dy

)q

= [ϕ]q
C0,1(Ωδ)

Cq0

(�
B(0,δ)

|U(x− z)|
|z|n+s−1

dz

)q

≤ [ϕ]q
C0,1(Ωδ)

Cq0

�
B(0,δ)

|U(x− z)|q

|z|n+s−1
dz

(�
B(0,δ)

1

|z|n+s−1
dz

)q−1

= [ϕ]q
C0,1(Ωδ)

Cq0

(
σn−1δ

1−s

1− s

)q−1 �
B(0,δ)

|U(x− z)|q

|z|n+s−1
dz,

where σn−1 is the area of the unit sphere of Rn.
Integrating,

�
Ω
g(x) dx ≤ [ϕ]q

C0,1(Ωδ)
Cq0

(
σn−1δ

1−s

1− s

)q−1 �
Ω

�
B(0,δ)

|U(x− z)|q

|z|n+s−1
dz dx

= [ϕ]q
C0,1(Ωδ)

Cq0

(
σn−1δ

1−s

1− s

)q−1 �
B(0,δ)

1

|z|n+s−1

�
Ω
|U(x− z)|qdx dz

= [ϕ]q
C0,1(Ωδ)

Cq0

(
σn−1δ

1−s

1− s

)q−1

‖U‖q
Lq(Ωδ,Rk×n)

�
B(0,δ)

1

|z|n+s−1
dz

≤ [ϕ]q
C0,1(Ωδ)

Cq0

(
σn−1δ

1−s

1− s

)q
‖U‖q

Lq(Ωδ,Rk×n)
.

(6.10)

Thus, by (6.9) we have

‖Ks,δ
ϕ (U)‖Lq(Ω,Rk) ≤ [ϕ]q

C0,1(Ωδ)
|cn,s|qCq0

(
σn−1δ

1−s

1− s

)q
‖U‖Lq(Ωδ,Rn×k).

Therefore, for every r ∈ [1, q] we have that there exists a constant C1 =
C1(n, s, q, δ, r, wδ, |Ω|) > 0 such that

‖Ks,δ
ϕ (U)‖Lr(Ω,Rk) ≤ [ϕ]q

C0,1(Ωδ)
C1‖U‖Lq(Ωδ,Rn×k).

And the proof is completed.
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As a consequence of Lemma 6.2.2 and a general result, the operator Ks,δ
ϕ

is continuous from the weak topology of Lq(Ωδ,Rk×n) to the weak topology
of Lp(Ω,Rk) for all p ∈ [1, q].

Now we introduce a product formula for the nonlocal gradient. We denote
by I the identity matrix of dimension n. Notice that these computations
would also be admissible with operator D̃s

δu from De�nition 6.1.4.

Lemma 6.2.3. Let 0 < s < 1, 0 < δ and 1 < p <∞. Let g ∈ Hs,p,δ(Ω) and
ϕ ∈ C1(Ωδ). Then ϕg ∈ Hs,p,δ(Ω) and for a.e. x ∈ Ω,

Ds
δ(ϕg)(x) = ϕ(x)Ds

δg(x) +Ks,δ
ϕ (gI)(x).

Proof. Clearly ϕg ∈ Lp(Rn). First we consider g ∈ C∞c (Rn) and later we will
extend it by density. Now, for a.e. x ∈ Ω we have

1

cn,s
Ds
δ(ϕg)(x) = pvx

�
B(x,δ)

(ϕg)(x)− (ϕg)(y)

|x− y|n+s

x− y
|x− y|

wδ(x− y) dy =

pvx

�
B(x,δ)

ϕ(x)g(x)− ϕ(x)g(y) + ϕ(x)g(y)− ϕ(y)g(y)

|x− y|n+s

x− y
|x− y|

wδ(x− y) dy =

1

cn,s

(
ϕ(x)Ds

δg(x) +Ks,δ
ϕ (gI)(x)

)
.

The term ϕDs
δg is in Lp(Ω,Rn) since ϕ ∈ C1

c (Rn), while the term Ks,δ
ϕ (gI)

is in Lp(Ω,Rn) by Lemma 6.2.2 .
Now we consider g ∈ Hs,p.δ(Ω) and a sequence {gj}j∈N ⊂ C∞c (Rn) such

that {gj}j∈N converges to g in Lp(Ωδ) and {Ds
δgj}j∈N is a Cauchy sequence in

Lp(Ω,Rn). It is immediate to check that ϕuj → ϕu in Lp(Ωδ). Let us check
that {Ds

δ(ϕuj)}j∈N is a Cauchy sequence in Lp(Ω,Rn). Owing to Lemma
6.2.3 we have

Ds
δ(ϕuj)−Ds

δ(ϕuk) = Ds
δ(ϕ(uj − uk)) = ϕDs

δ(uj − uk) +Ks,δ
ϕ (uj − uk),

for j, k ∈ N. Next, since Ds
δ(uj − uk) → 0 in Lp(Ω,Rn) as j, k → ∞, we

also have that ϕDs
δ(uj − uk) → 0 in Lp(Ω,Rn). By Lemma 6.2.2 , since

uj − uk → 0 in Lp(Ωδ) as j, k → ∞, we obtain that Ks,δ
ϕ (uj − uk) → 0 in

Lp(Ω,Rn). This shows that ϕu ∈ Hs,p,δ(Ω).

Its proof is analogous to that of [84, Lemma 2.3], and, hence, it will be
omitted.

For a φ ∈ Hs,p,δ(Ω,Rn) there is a natural relation betweenDs
δφ and divsδ φ.

Lemma 6.2.4. Let 0 < s < 1 and 1 ≤ p <∞. Let φ ∈ Hs,p,δ(Ω,Rn). Then
divsδ φ is well de�ned and trDs

δφ = divsδ φ a.e.
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Proof. By density, it su�ces to show that trDs
δφ = divsδ φ for all φ ∈ C∞c (Rn).

Having in mind that the integrals of (6.5) and of the right hand side of (6.4)
are absolutely convergent, we obtain that

trDs
δφ(x) = cn,s tr

(�
B(x,δ)

φ(x)− φ(y)

|x− y|n+s
⊗ x− y
|x− y|

wδ(x− y)dy

)

= cn,s

�
B(x,δ)

tr

(
φ(x)− φ(y)

|x− y|n+s
⊗ x− y
|x− y|

wδ(x− y)

)
dy

= cn,s

�
B(x,δ)

φ(x)− φ(y)

|x− y|n+s
· x− y
|x− y|

wδ(x− y)dy = divsδ φ(x),

which concludes the proof.

As in Lemma 6.2.3, the following result computes the nonlocal divergence
of a product.

Lemma 6.2.5. Let 0 < s < 1, 0 < δ and 1 < p < ∞. Let g ∈ Hs,p,δ(Ω,Rn)
and ϕ ∈ C1

c (Ω). Then ϕg ∈ Hs,p,δ(Ω,Rn) and for a.e. x ∈ Rn,

divsδ(ϕg)(x) = ϕ(x) divsδ g(x) +Ks,δ
ϕ (gT )(x).

Finally we show an analogous of the Schwartz theorem of the symmetry
of second derivatives.

Proposition 6.2.6. Let 0 < s < 1, 0 < δ and u ∈ C∞c (Rn). Let i ∈
{1, . . . , n} and

Ds
δ,iu(x) := (n+ s− 1)

�
B(x,δ)

u(x)− u(y)

|x− y|
xi − yi
|x− y|

ρδ(x− y) dy. (6.11)

Then, for every i, j ∈ {1, . . . , n}, the following equality holds

Ds
δ,j(D

s
δ,iu) = Ds

δ,i(D
s
δ,ju).

Proof. We have that, making the change of variables y = ȳ + x′ − x and
renaming ȳ = y,

Ds
δ,iu(x)−Ds

δ,iu(x′)

(n+ s− 1)
=

�
B(x,δ)

u(x)− u(y)

|x− y|
xi − yi
|x− y|

ρδ(x− y) dy−
�
B(x′,δ)

u(x′)− u(y)

|x′ − y|
x′i − yi
|x′ − y|

ρδ(x
′ − y) dy =

�
B(x,δ)

[u(x)− u(y)− u(x′) + u(y + x′ − x)]

|x− y|2
(xi − yi)ρδ(x− y) dy.
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Therefore,

Ds
δ,j(D

s
δ,iu)(x)

(n+ s− 1)2
=

�
B(x,δ)

�
B(x,δ)

[u(x)− u(y)− u(x′) + u(y + x′ − x)]

|x− y|2|x− x′|2

(xi − yi)ρδ(x− y)(xj − x′j)ρδ(x− x′) dydx′.
(6.12)

If we apply know Fubini theorem we obtain that

Ds
δ,j(D

s
δ,iu)(x)

(n+ s− 1)2
=

�
B(x,δ)

�
B(x,δ)

u(x)−u(x′)
|x−x′|2 (xj − x′j)ρδ(x− x′)dx′

|x− y|2
(xi − yi)ρδ(x− y)dy−

�
B(x,δ)

�
B(x,δ)

u(y)−u(y+x′−x)
|x−x′|2 (xj − x′j)ρδ(x− x′)dx′

|x− y|2
(xi − yi)ρδ(x− y)dy.

If we make the change of variables x̄ = x′ − x+ y, it yields
�
B(x,δ)

u(y)− u(y + x′ − x)

|x− x′|2
(xj − x′j)ρδ(x− x′)dx =

�
B(y,δ)

u(y)− u(x̄)

|y − x̄|2
(yj − x̄j)ρδ(y − x̄)dx̄ =

Ds
δ,ju(y)

(n+ s− 1)
.

(6.13)

Therefore, combining (6.12) and (6.13), we have that

Ds
δ,j(D

s
δ,iu)(x)

(n+ s− 1)2
=

�
B(x,δ)

Ds
δ,ju(x)−Ds

δ,ju(y)

|x− y|2
(xi − yi)ρδ(x− y) dy

Ds
δ,i(D

s
δ,ju)(x)

(n+ s− 1)2
,

and the results follows.

Remark 6.2.1. If we de�ne each component of the nonlocal divergence of a
�eld φ ∈ C∞c (Rn,Rn) as

divsδ,i φi(x) = −pvx(n+ s− 1)

�
B(x,δ)

φi(x) + φi(y)

|x− y|
xi − yi
|x− y|

ρδ(x− y) dy,

(6.14)
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by odd symmetry we have that

divsδ,i φi(x) = Ds
δ,iφi(x). (6.15)

Then, and as a consequence of Proposition 6.2.6, we have that for u ∈
C∞c (Rn)

divsδ,j(D
s
δ,iu) = divsδ,i(D

s
δ,ju) and divsδ,j(D

s
δ,iu) = Ds

δ,j(divsδ,i u).

6.3 Nonlocal version of the Fundamental Theorem

of Calculus

We start by recalling the following classical representation theorem which can
be seen in [63, Lemma 7.14] or [92, Prop. 4.14]. Although it has already been
introduced in Section 3.5, given the analysis performed in this section, we
show it again here for the sake of the reader.

Proposition 6.3.1. For every ϕ ∈ C∞c (Rn) and every x ∈ Rn, we have

ϕ(x) =
1

σn−1

�
Rn
∇ϕ(y) · x− y

|x− y|n
dy,

where σn−1 is the area of the unit sphere.

This result may be understood as a fundamental theorem of calculus, in
the sense that we recover a function from its gradient by integration. A
fractional version of it, involving the Riesz fractional gradient in the whole
space is also known (see Theorem 3.5.1). This section is devoted to show a
novel nonlocal version of Proposition 6.3.1, where a function can be recovered
from its nonlocal gradient Ds

δ through a convolution with a suitable kernel
V s
δ .
Our approach is inspired by the proofs of the fractional fundamental the-

orem of calculus previously referred in [92, 99]. However, those rely on the
semigroup properties of Riesz potentials, which our kernels do not enjoy.
Therefore our procedure is much more involved.

To begin with, we show that the kernel in the de�nition of Ds
δu (see

formula (6.3)) can be seen, in a certain sense, as the gradient of a certain
function.
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Lemma 6.3.2. Let 0 < s < 1 and 0 < δ. De�ne qδ : [0,∞) → R and
Qsδ : Rn \ {0} → R as

qδ(t) = (n+ s− 1)tn+s−1

� δ

t

w̄δ(r)

rn+s
dr and

Qsδ(x̃) =
1

γ(1− s)|x̃|n+s−1
qδ(|x̃|).

Then:

a) qδ is C∞((0,∞)), Cn−1([0,∞)), qδ|[δ,∞) = 0 and there exists a constant
z0 ∈ R such that for every t ∈ [0, b0δ],

qδ(t) = a0 + z0 t
n+s−1.

b) Qsδ is radially decreasing, Qsδ ∈ L1(Rn) and

−1

n+ s− 1
∇Qsδ(x̃) =

ρδ(x̃)

|x̃|
x̃

|x̃|
. (6.16)

Proof. We start with a). The function qδ is clearly C∞ in (0,∞) as a product
of C∞ functions in (0,∞). We have that(

qδ(t)

tn+s−1

)′
= −(n+ s− 1)

w̄δ(t)

tn+s
, t > 0. (6.17)

Since qδ(δ) = 0 and w̄δ|[δ,∞) = 0, we obtain that qδ|[δ,∞) = 0. Now, for
0 < t < δb0 we have that

qδ(t) = (n+ s− 1)tn+s−1

(� b0δ

t

w̄δ(r)

rn+s
dr +

� δ

b0δ

w̄δ(r)

rn+s
dr

)
= a0

(
1−

(
t

b0δ

)n+s−1
)

+ (n+ s− 1)tn+s−1

� δ

b0δ

w̄δ(r)

rn+s
dr,

where a0 and b0 are the constants from the de�nition of wδ. In particular, qδ
is Cn−1([0,∞)) and the existence of z0 in the statement follows.

We now show b). We get immediately from (6.17) that

∇Qsδ(x̃) = −n+ s− 1

γ(1− s)
w̄δ(|x̃|)
|x̃|n+s

x̃

|x̃|
, x̃ ∈ Rn \ {0},

so (6.16) holds. The fact that Qsδ is radially decreasing function is also ob-
tained from (6.17). Finally, Qsδ ∈ L1(Rn) as a consequence of the boundedness
of qδ.
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Next, we show the following proposition, whose goal is to write the non-
local gradient as a convolution of the classical one with a kernel. Its proof,
inspired by that of [92, Lemma 15.9] (see also [99], which is stated in this doc-
ument in Theorem 3.1.6), is based on an integration by parts starting with
(6.16). Recall, from the comments after De�nition 6.1.4, that Ds

δu is de�ned
in the whole Rn for u ∈ C∞c (Rn). In this case, suppDs

δu ⊂ suppu+B(0, δ).

Proposition 6.3.3. For every u ∈ C∞c (Rn) and x ∈ Rn we have

Ds
δu(x) =

�
Rn
∇u(y)Qsδ(x− y)dy (6.18)

and Ds
δu ∈ C∞c (Rn).

Proof. Let K be a ball containing suppϕ and let Kδ = K+B(0, δ). If x ∈ Kc
δ

then both terms of (6.18) are zero since suppDs
δϕ ⊂ Kδ and suppQsδ ⊂

B(0, δ). Thus, we consider x ∈ Kδ, e ∈ Rn with |e| = 1 and the vector �eld

β : Kδ \ {x} → Rn

de�ned by
β(y) = (u(x)− u(y))Qsδ(x− y)e.

Let ε > 0 be such that B̄(x, ε) ⊂ Kδ. From Lemma 6.3.2 we have that

div β(y) = (n+ s− 1)
u(x)− u(y)

|x− y|
ρδ(x− y)

x− y
|x− y|

· e−Qsδ(x− y)∇u(y) · e,

(6.19)
for y ∈ Kδ \ B(x, ε). Notice also that div β is integrable in Kδ \ B(x, ε).
Applying the divergence theorem we obtain�
Kδ\B(x,ε)

div β(y) dy =

�
∂Kδ

β(y)·νy dHn−1(y)+

�
∂B(x,ε)

β(y)· x− y
|x− y|

dHn−1(y),

where νy is the outer normal vector to Kδ. Now we show that β(y) = 0 for
all y ∈ ∂Kδ. Indeed, if x ∈ Kδ \ K then u(x) = u(y) = 0 for all y ∈ ∂Kδ,
whereas if x ∈ K, then Qsδ(x− y) = 0 for every y ∈ ∂Kδ. Thus,�

Kδ\B(x,ε)
div β(y) dy =

�
∂B(x,ε)

β(y) · x− y
|x− y|

dHn−1(y).

Now we estimate the integrand in the right-hand side. As u is Lipschitz, using
the de�nition of Qsδ (see Lemma 6.3.2) we �nd that, for all y ∈ ∂B(x, ε),∣∣∣∣β(y) · x− y

|x− y|

∣∣∣∣ ≤ |β(y)| ≤ ‖∇u‖∞ |x− y| |Q
s
δ(x− y)| ≤ ‖∇u‖∞

c

|x− y|n+s−2

= ‖∇u‖∞
c

εn+s−2
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for some constant c > 0, so∣∣∣∣∣
�
∂B(x,ε)

β(y) · x− y
|x− y|

dHn−1(y)

∣∣∣∣∣ ≤ ‖∇u‖∞ cσn−1ε
1−s,

which goes to 0 when ε goes to 0. Therefore,

lim
ε→0

�
Kδ\B(x,ε)

div β(y)dy = 0.

As a result, using (6.19) we obtain that

lim
ε→0

�
Kδ\B(x,ε)

(n+ s− 1)
u(x)− u(y)

|x− y|
ρδ(x− y)

x− y
|x− y|

· e dy =

lim
ε→0

�
Kδ\B(x,ε)

Qsδ(x− y)∇u(y) · e dy,

provided that both limits exists, which is actually true as both integrals are
absolutely convergent in Kδ; see the comment after De�nition 6.1.4 for the
left integral and notice that Qsδ ∈ L1(Rn) (see Lemma 6.3.2) for the right
integral. Thus,�
Kδ

(n+ s− 1)
u(x)− u(y)

|x− y|
ρδ(x− y)

x− y
|x− y|

· e dy =

�
Kδ

Qsδ(x− y)∇u(y) · e dy.

As this is true for every e ∈ Rn with |e| = 1, we conclude that
�
Kδ

(n+ s− 1)
u(x)− u(y)

|x− y|
x− y
|x− y|

ρδ(x− y) dy =

�
Kδ

∇u(y)Qsδ(x− y) dy,

and formula (6.18) is proved.
We have thus shown that Ds

δu = ∇u ∗ Qsδ. As Qsδ ∈ L1(Rn) and both u
and Qsδ have compact support, this implies that Ds

δu ∈ C∞c (Rn).

Given the previous result, it is straightforward to obtain the following
corollary (for more details on the Fourier transform, see next subsection).

Corollary 6.3.4. Let 0 < s < 1 and 0 < δ. Then, for all u ∈ C∞c (Rn),

D̂s
δu(ξ) = 2πiξ û(ξ) Q̂sδ(ξ).

Proof. Given u ∈ C∞c (Rn) we apply Fourier transform on (6.18) (a convolu-
tion of two functions in L1(Rn)). Thus we obtain

D̂s
δu(ξ) = ∇̂u(ξ)Q̂sδ(ξ) = 2πiξû(ξ)Q̂sδ(ξ).
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We continue with the two main results of this section.

Proposition 6.3.5. Let 0 < s < 1 and 0 < δ. Then there exists a unique
function V s

δ ∈ C∞(Rn\{0}) such that
�
Rn
V s
δ (z)Qsδ(y − z)dz =

1

σn−1

y

|y|n
, y ∈ Rn \ {0}. (6.20)

Moreover, V s
δ ∈ L1

loc(Rn,Rn), and for every R > 0 there exists M > 0 such
that

|V s
δ (x)| ≤ M

|x|n−s
, x ∈ B(0, R) \ {0}.

For further properties of V s
δ see Theorem 6.3.14.

The proof of Proposition 6.3.5 is long and comprises the whole of Section
6.3.1. With this, the main theorem of this section reads as follows. Its
proof follows the lines from [92, Prop. 15.8], whereas the main di�erences are
gathered in Proposition 6.3.5.

Theorem 6.3.6. Let 0 < s < 1 and 0 < δ. Let V s
δ be the function of

Proposition 6.3.5. Then, for every u ∈ C∞c (Rn) and x ∈ Rn,

u(x) =

�
Rn
Ds
δu(y) · V s

δ (x− y) dy. (6.21)

Proof. Let F (x) denote the right hand side of (6.21). This integral is ab-
solutely convergent since V s

δ ∈ L1
loc(Rn,Rn) (Proposition 6.3.5) and Ds

δu is
bounded with compact support (Proposition 6.3.3). In fact, Proposition 6.3.3
allows us to write the equality

F (x) =

�
Rn

�
Rn
∇u(z)Qsδ(y − z) · V s

δ (x− y) dz dy.

Next we make the changes of variables η = x− y and ξ = x− z to obtain

F (x) =

�
Rn
∇u(x− ξ) ·

�
Rn
V s
δ (η)Qsδ(ξ − η) dη dξ.

By Proposition 6.3.5,�
Rn
V s
δ (η)Qsδ(ξ − η)dη =

1

σn−1

ξ

|ξ|n
.

Thus, thanks to Proposition 6.3.1,

F (x) =

�
Rn
∇u(x− ξ) · ξ

σn−1|ξ|n
dξ = u(x)

and the proof is complete.
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6.3.1 Inverse Kernel

This section is devoted to the proof of Proposition 6.3.5, which is divided into
several intermediate results. In the �rst half of the section, we will see that
formula

V̂ s
δ (ξ) =

−iξ
2π|ξ|2

1

Q̂sδ(ξ)

(obtained heuristically by applying Fourier transform to (6.20) and using
Lemma 6.3.19) is well de�ned. The crucial point for this is to show that Q̂sδ
is positive. We then conclude that V s

δ is at least a tempered distribution. In
the second half, we see that V s

δ is actually a function.
We indicate the convention for the Fourier transform of a function that

we use:

f̂(ξ) =

�
Rn
f(x)e−2πix·ξ dx

for f ∈ L1(Rn). This de�nition is extended by continuity and duality to many
other function and distribution spaces, notably, as isomorphisms in L2, in the
Schwartz space S and in the space of tempered distributions S ′. Sometimes
we will also use the alternative notation F(f) for f̂ . Classical texts in Fourier
analysis are [66,71].

In a great part of the proof, we will make comparisons with the Riesz
potential. Although it has been extensively used in Part II, we recall (see
[99,110]) that given 0 < s < n, the Riesz potential Is : Rn \ {0} → R and, in
particular, its Fourier transform are

Is(x) =
1

γ(s)

1

|x|n−s
and Îs(ξ) = |2πξ|−s, (6.22)

where γ(s) is de�ned in (6.2).
We start with an analysis of the Fourier transform of the vectorial version

of the qδ of Lemma 6.3.2.

Lemma 6.3.7. Let 0 < s < 1 and 0 < δ. Let qδ : Rn → R be de�ned
as qδ(x) = qδ(|x|). Then its Fourier transform is an analytic function and
q̂δ ∈ C0(Rn) ∩ L1(Rn).

Proof. Half of this proof comes directly from known facts in Fourier analysis.
Given that qδ ∈ Cn−1

c ([0,∞)), we have that qδ ∈ L1(Rn) and therefore
q̂δ ∈ C0(Rn). Actually, since qδ has compact support, q̂δ is analytic. Now
we check that qδ ∈ W 2n−1,1(Rn). Indeed, as a consequence of Lemma 6.3.2,
for 1 ≤ j ≤ 2n− 1 there exists zj ∈ R such that

q
j)
δ (t) = zjt

n+s−1−j , t ∈ (0, b0δ),
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where the superindex j indicates the j-th derivative. On the other hand, qj)δ
is bounded in [b0δ, δ] and vanishes in [δ,∞). This implies that the a.e. and
weak derivative of order j of qδ coincide and they satisfy, for some constant
Cj > 0, ∣∣∣Dj)(x)

∣∣∣ ≤ Cj |x|n+s−1−j , x ∈ B(0, b0δ) \ {0}

while
∣∣Dj)(x)

∣∣ is bounded in B(0, δ) \ B(0, b0, δ) and vanishes in B(0, δ)c.
This implies that qδ ∈ W 2n−1,1(Rn). In particular, the Fourier transform of
any partial derivative of order 2n− 1 of qδ is bounded, so there exists C > 0
such that for any multiindex α of order 2n− 1 we have

|(2πiξ)αq̂δ(ξ)| = |∂̂αqδ(ξ)| ≤ C,

and, hence,

|q̂δ(ξ)| ≤
C

|2πξ|2n−1
.

This decay at in�nity of q̂δ, together with the fact that q̂δ is continuous,
implies that q̂δ ∈ L1(Rn) for n ≥ 2.

In the rest of the proof, we assume that n = 1. In this case, qδ is the even
extension of qδ. As shown before, there exists z1 ∈ R such that q′δ(x) = z1

|x|1−s
for x ∈ B(0, b0δ).

Now we consider a ϕ ∈ C∞c (R) with ϕ|B(0, 1
4

) = 1 and ϕ|B(0, 1
2

)c = 0. Then,

|2πξ|−s − 1

z1γ(s)
q̂′δ(ξ) = F

(
1

γ(s)|x|1−s
− 1

z1γ(s)
q′δ(x)

)
= F

(
ϕ

γ(s)|x|1−s
− 1

z1γ(s)
q′δ(x)

)
+ F

(
1− ϕ

γ(s)|x|1−s

)
.

Looking at the expression of q′δ, we notice that the functions ϕ
γ(s)|x|1−s and

1
z1γ(s)q

′
δ(x) coincide in B(0,min{b0δ, 1

4}), and both have compact support.
Therefore, its di�erence is a smooth function of compact support. It particular
it is in the Schwartz space, as well as its Fourier transform:

F
(

ϕ

γ(s)|x|1−s
− 1

z1γ(s)
q′δ(x)

)
∈ S.

On the other hand, the function F
(

1−ϕ
γ(s)|x|1−s

)
is treated in [66, Ex. 2.4.9],

and it is concluded that its decay at in�nity is faster than any negative power
of |ξ|. Consequently, the decay at in�nity of

|2πξ|−s − 1

z1γ(s)
q̂′δ(ξ)
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is also faster than any negative power of |ξ|. In particular, there exists C ′1 > 0
such that ∣∣∣∣ 2πξ

z1γ(s)
q̂δ(ξ)

∣∣∣∣ < C ′1
|2πξ|s

,

which allows us to conclude that q̂δ ∈ L1(R).

The last lemma is useful so as to obtain relevant properties about Q̂sδ.

Proposition 6.3.8. Let 0 < s < 1 and 0 < δ. Then

a) Q̂sδ is analytic, bounded, radial, and Q̂
s
δ(0) = ‖Qsδ‖L1(Rn).

b) For every multi-index α, ∂αQ̂sδ is bounded.

c) lim
|ξ|→∞

Q̂sδ(ξ)

|2πξ|−(1−s) = a0,

where a0 is the constant from the de�nition of wδ.

Proof. The proof of part a) comes directly from known facts in Fourier anal-
ysis. Indeed, as Qsδ ∈ L1(Rn) we have Q̂sδ ∈ L∞(Rn). As Qsδ has compact
support, Q̂sδ is analytic. Since Qsδ is radial, so is Q̂sδ. Finally, the equality
Q̂sδ(0) = ‖Qsδ‖L1(Rn) is a straightforward consequence of the formula of the
Fourier transform.

Regarding b), we have that ∂αQ̂sδ = F ((−2πiξ)αQsδ). Thus, ∂
αQ̂sδ is the

Fourier transform of an L1(Rn) function (since Qsδ ∈ L1(Rn) has compact
support). Therefore, ∂αQ̂sδ is bounded.

In order to show c), we apply the Fourier transform to the expression
Qsδ = I1−s qδ (see the de�nition in Lemmas 6.3.2 and 6.3.7). Since the Riesz
potential I1−s is not an L1(Rn) function and qδ is not Schwartz, the Fourier
transform is, in principle, in the sense of tempered distributions. To wit, as
I1−s ∈ L1(B(0, 1)) + L∞(B(0, 1)c), both factors I1−s and qδ can be seen as
distributions; in addition, qδ has compact support, so we can use Lemma
6.3.20 and obtain that

Q̂sδ(ξ) = |2πξ|−(1−s) ∗ q̂δ(ξ) (6.23)

in the sense of distributions. Actually, by Young's inequality for the convo-
lution we have that

‖Î1−s ∗ q̂δ‖∞ ≤ ‖Î1−sχB(0,1)‖1‖q̂δ‖∞ + ‖Î1−sχB(0,1)c‖∞‖q̂δ‖1.
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Therefore, the integral de�ning (Î1−s ∗ q̂δ)(ξ) is absolutely convergent for a.e.
ξ ∈ Rn. Consequently, equality (6.23) holds a.e., and, since Q̂sδ is continuous,
it holds everywhere.

Then, we consider ξ = λξ0 with ξ0 ∈ B(0, 1/2)c �xed and λ > 0. Using
the change of variables x = λx′ we have

Q̂sδ(λξ0) =

�
|2π(x− λξ0)|−(1−s)q̂δ(x) dx

=

�
|2π(λx− λξ0)|−(1−s)q̂δ(λx)λn dx

= λ−(1−s)
�
|2π(ξ0 − x)|−(1−s)q̂δ(λx)λn dx.

As the function ξ 7→ Q̂sδ(ξ)

|2πξ|−(1−s) is radial, in order for c) to hold, it is enough

that

lim
λ→∞

Q̂sδ(λξ0)

|2πλξ0|−(1−s) = a0,

equivalently,

lim
λ→∞

�
|2π(ξ0 − x)|−(1−s)q̂δ(λx)λn dx

|2πξ0|−(1−s) = a0.

De�ne now gλ(x) = 1
a0
q̂δ(λx)λn. The limit above is equivalent to

lim
λ→∞

�
|2π(ξ0 − x)|−(1−s)gλ(x) dx

|2πξ0|−(1−s) = 1.

De�ne now f(ξ) = |2πξ|−(1−s). The limit above is equivalent to

lim
λ→∞

�
f(ξ0 − x)gλ(x) dx

f(ξ0)
= 1,

and, in turn, equivalent to

lim
λ→∞

�
f(ξ0 − x)gλ(x) dx = f(ξ0),

in other words,
lim
λ→∞

f ∗ gλ(ξ0) = f(ξ0).

We recall from Lemmas 6.3.2 and 6.3.7 that a0 = qδ(0) =
�
q̂δ. Thus,�

gλ = 1 for each λ > 0. Then, by construction, gλ is a molli�er family
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tending to the Dirac delta at 0, when λ → ∞ in the sense of distributions.
Thus,

|f ∗ gλ(ξ0)− f(ξ0)| =
∣∣∣∣�

Rn
f(ξ0 − x)gλ(x) dx−

�
Rn
f(ξ0)gλ(x) dx

∣∣∣∣
≤
�
Rn
|f(ξ0 − x)− f(ξ0)| |gλ(x)| dx.

Let ε > 0. Since f is uniformly continuous in B(0, 1/2)c, there exists r > 0
such that

|f(ξ0 − x)− f(ξ0)| < ε ∀ξ0 ∈ B(0, 1/2)c , ∀x ∈ B(0, r).

Therefore, as f ∈ L∞(B(0, 1/2)c), in fact,

‖f‖L∞(B(0,1/2)c) = f(1/2) = π−(1−s) ≤ 1,

we have that

|f ∗ gλ(ξ0)− f(ξ0)| ≤
�
B(0,r)

|f(ξ0 − x)− f(ξ0)| |gλ(x)| dx

+

�
B(0,r)c

|f(ξ0 − x)− f(ξ0)| |gλ(x)| dx

≤ε
�
B(0,r)

|gλ(x)|dx+ 2‖f‖L∞(B(0,1/2)c)

�
B(0,r)c

|gλ(x)|dx.

Finally, we use that gλ is a molli�er sequence, in particular, we have that
limλ→∞

�
B(0,r)c |gλ(x)| dx→ 0. As a result, there exists λ0 > 0 such that for

every λ > λ0, the inequality
�
B(0,r)c |gλ(x)| dx < ε holds. As a consequence

|f ∗ gλ(ξ0)− f(ξ0)| ≤ (‖gλ‖L1(Rn) + 2‖f‖L∞(B(0,1/2)c))ε ≤ (‖g1‖L1(Rn) + 2)ε,

since ‖gλ‖1 = ‖g1‖1. This proves the convergence f ∗ gλ(ξ0) → f(ξ0) for
every ξ0 ∈ B(0, 1/2)c, when λ → ∞, and, hence, the convergence of the
statement.

The next step is the positivity of Q̂sδ. For such a process, the following
calculation is useful.

Lemma 6.3.9. Let 0 < s < 1 and 0 < δ. Then, for all j ∈ {1, . . . , n} and
r > 0, �

xj
|x|n+s+1

wδ(x) sin (2πrxj) dx > 0.
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Proof. By a change of variables we have
�

xj
|x|n+s+1

wδ(x) sin (2πrxj) dx = rs
�

xj
|x|n+s+1

wδ

(x
r

)
sin (2πxj) dx.

Let w̄δ be the radial representation of wδ. By symmetry, the co-area formula
and Fubini's Theorem we have

�
xj

|x|n+s+1
wδ

(x
r

)
sin (2πxj) dx =

2

�
{xj>0}

xj
|x|n+s+1

wδ

(x
r

)
sin (2πxj) dx =

2

� rδ

0

w̄δ
(
t
r

)
tn+s+1

tn−1

�
S+
j

tzj sin(2πtzj) dHn−1(z) dt =

2

�
S+
j

zj

� rδ

0

w̄δ
(
t
r

)
ts+1

sin(2πtzj) dt dHn−1(z),

where S+
j = {z ∈ Sn−1 : zj > 0}. Finally, let us show that

� rδ

0

w̄δ
(
t
r

)
ts+1

sin(2πtzj) dt > 0

for each z ∈ S+
j and r > 0. For this, consider the function f(t) =

w̄δ( tr )
ts+1 and

express

� rδ

0

w̄δ
(
t
r

)
ts+1

sin(2πtzj) dt =

∞∑
k=0

� k+1
zj

k
zj

f(t) sin(2πtzj) dt.

We have that each term in the sum is positive; indeed, by splitting the integral

in two through points
k+ 1

2
zj

and making the change of variables t = t′+ 1
2zj

in
one of them, it is easy to obtain

� k+1
zj

k
zj

f(t) sin(2πtzj) dt =

� k+ 1
2

zj

k
zj

[
f(t)− f(t+

1

2zj
)

]
sin(2πtzj) dt ≥ 0,

since sin(2πtzj) > 0 and f is decreasing. In fact,

� 1
2zj

0

[
f(t)− f(t+

1

2zj
)

]
sin(2πtzj) dt > 0,
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as f is strictly decreasing in [0, α] for some α > 0, so

∞∑
k=0

� k+1
zj

k
zj

f(t) sin(2πtzj) dt > 0,

which concludes the proof.

We conclude the �rst half of the subsection with the following result.

Proposition 6.3.10. Let 0 < s < 1 and 0 < δ. Then Q̂sδ(ξ) > 0 for all
ξ ∈ Rn.

Proof. Since Q̂sδ(0) = ‖Qsδ‖L1(Rn) > 0, we have to show that Q̂sδ(ξ) > 0 for

every ξ ∈ Rn \ {0}. In order to do so, taking into account that Q̂sδ is radial,
we will see that

2πiξjQ̂
s
δ(ξjej) =

∂̂Qsδ
∂xj

(ξjej) 6= 0 ξj > 0,

with ej the j-th vector of the canonical basis. Now, we claim that, despite
∂Qsδ
∂xj

/∈ L1(Rn),

∂̂Qsδ
∂xj

(ξ) =
(n+ s− 1)

γ(1− s)
i

�
xj

|x|n+s+1
wδ(x) sin (2πξ · x) dx. (6.24)

This is shown at the end of the proof. Assuming the validity of (6.24), by
Lemma 6.3.9 we obtain

1

i

∂̂Qsδ
∂xj

(ξjej) > 0, ξj > 0.

Now, the formula

2πiξjQ̂
s
δ(ξjej) =

∂̂Qsδ
∂xj

(ξjej)

holds in the sense of tempered distributions. Since both terms are actually
functions, the equality holds as functions for almost every point. Moreover,
since both functions are continuous, the equality holds everywhere. We then
conclude that

ξjQ̂
s
δ(ξjej) > 0, ξj > 0.

Consequently, since Q̂sδ is radial, Q̂
s
δ(ξ) > 0 for all ξ ∈ Rn.
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It remains to prove (6.24). By Lemma 6.3.2,

∂Qsδ
∂xj

(x) = −(n+ s− 1)
ρδ(x)

|x|
xj
|x|
.

We do have
∂Qsδ
∂xj

χB(0,ε)c ∈ L1(Rn) for all ε > 0. Moreover, by Lemma 6.3.15

∂Qsδ
∂xj

χB(0,ε)c →
∂Qsδ
∂xj

in S ′ as ε→ 0,

so

F
(
∂Qsδ
∂xj

χB(0,ε)c

)
→ F

(
∂Qsδ
∂xj

)
in S ′ as ε→ 0.

We now compute

F
(
∂Qsδ
∂xj

χB(0,ε)c

)
(ξ) = −(n+ s− 1)

γ(1− s)

�
B(0,ε)c

xj
|x|n+s+1

wδ(x)e−2πiξ·x dx

=
(n+ s− 1)

γ(1− s)
i

�
B(0,ε)c

xj
|x|n+s+1

wδ(x) sin (2πξ · x) dx,

where we have used the odd symmetry. Now, by dominated convergence
�
B(0,ε)c

xj
|x|n+s+1

wδ(x) sin (2πξ · x) dx→
�

xj
|x|n+s+1

wδ(x) sin (2πξ · x) dx

since ∣∣∣∣χB(0,ε)c
xj

|x|n+s+1
wδ(x) sin (2πξ · x)

∣∣∣∣ ≤ 1

|x|n+s
wδ(x) |2πξ · x|

≤ 1

|x|n+s−1
wδ(x)2π |ξ|

and �
1

|x|n+s−1
wδ(x) dx <∞.

This proves (6.24).

Corollary 6.3.11. Let 0 < s < 1, 0 < δ. There exists a tempered distribution
V s
δ whose Fourier transform is given by

V̂ s
δ (ξ) = − iξ

2π|ξ|2
1

Q̂sδ(ξ)
. (6.25)
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Proof. The right-hand side of (6.25) is well de�ned for ξ ∈ Rn \ {0} since
Q̂sδ is positive (Proposition 6.3.10). Next, we subtract the function (and
distribution) −ξ|ξ|

1
|2πξ| of Lemma 6.3.19 from V̂ s

δ :

V̂ s
δ (ξ)− −iξ

2π|ξ|2
1

Q̂sδ(0)
= − iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ

2π|ξ|2
1

Q̂sδ(0)
. (6.26)

This function is in L∞(B(0, R)c) for any R > 0, as a di�erence of functions in
L∞(B(0, R)c) (see Proposition 6.3.8). Let us see that it is also in L∞(B(0, R))
for some R > 0. By a Taylor expansion, there exist c > 0 and R > 0 such
that for all ξ ∈ B(0, R), ∣∣∣Q̂sδ(0)− Q̂sδ(ξ)

∣∣∣ ≤ c|ξ|.
As a result,∣∣∣∣∣V̂ s

δ (ξ)− −iξ
2π|ξ|2

1

Q̂sδ(0)

∣∣∣∣∣ =
1

2π|ξ|
|Q̂sδ(0)− Q̂sδ(ξ)|
Q̂sδ(ξ)Q̂

s
δ(0)

≤ 1

2π

c

Q̂sδ(0) minB(0,R) Q̂
s
δ

,

so the function in (6.26) is in L∞(B(0, R)), and, hence, in L∞(Rn). In par-
ticular, this function is a tempered distribution, and so is V̂ s

δ . As the Fourier
transform is an isomorphism from S ′ into itself, there exists V s

δ ∈ S ′ such
that (6.25) holds.

In this second part we address the existence of V s
δ as a function. First we

notice that V̂ s
δ does not belong to any space where we can conclude directly

that its Fourier transform is a function. The main drawback comes from
the fact that the tail of V̂ s

δ is not integrable enough, although in the limit
it behaves like a homogeneous function with a known Fourier transform. So
as to tackle this, we adapt the proof of [66, Proposition 2.4.8] (homogeneous
function) to the non-homogeneous function V̂ s

δ .
We �rst need the following decay estimate for the derivatives of V̂ s

δ . We
use the multiindex notation for the higher-order partial derivatives.

Lemma 6.3.12. For every α ∈ Nn there exists Cα > 0 such that for any
|ξ| ≥ 1, ∣∣∣∂αV̂ s

δ (ξ)
∣∣∣ ≤ 1

|ξ|s(|α|+1)
.

Proof. Express V̂ s
δ = g f with

g(ξ) =
ξ

|ξ|
, f = f1 ◦ g1, f1(t) = t−1, g1(ξ) = |ξ|Q̂sδ(ξ).
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By Leibniz' formula,

∂α(gf) =
∑
β≤α

(
α

β

)
∂βg∂α−βf.

Let β ∈ Nn and j ∈ N. Denote by gj the j-th component of g. By induction,
it is easy to see that ∂βgj(ξ) can be expressed as

P (ξ)

|ξ|2|β|+1

for some polynomial P of degree |β|+ 1. Therefore,∣∣∣∂βg(ξ)
∣∣∣ ≤ Cβ

|ξ||β|
, ξ ∈ Rn \ {0}. (6.27)

We apply Faà di Bruno's formula for the higher-order derivatives of a com-
position, and obtain that

∂γf =

|γ|∑
i=1

f
i)
1 ◦ g1Gi

where Gi is a linear combination of products of i partial derivatives of g1, the
order of which adds up |γ|.

We estimate the partial derivatives of g1. We express g1 = h Q̂sδ with
h(ξ) = |ξ|. Since ∇h = g, we have, by (6.27), that∣∣∣∂βh(ξ)

∣∣∣ ≤ Cβ

|ξ||β|−1
, ξ ∈ Rn \ {0}. (6.28)

Now we show that

|∂βQ̂sδ(ξ)| ≤
Cβ

|ξ||β|
, ξ ∈ Rn \ {0}. (6.29)

Recalling from Lemma 6.3.2 the de�nition of Qsδ, we mention here that it is
an L1 function of compact support, smooth outside the origin, and that in a
ball B centred at the origin, one has

Qsδ(x) = A0 +
C0

|x|n+s−1
, x ∈ B \ {0}

for some A0, C0 ∈ R. With this expression it is easy to see that

∣∣∣∂β(xβQsδ(x))
∣∣∣ =

∣∣∣∣∣∣
∑
γ≤β

(
β

γ

)
∂γ
(
xβ
)
∂γ−βQsδ(x)

∣∣∣∣∣∣ ≤ Cβ
|x|n+s−1

, x ∈ B \ {0}
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for some Cβ ∈ R. Moreover, ∂β((−2πx)βQsδ) is smooth outside the origin, has
compact support and is in L1. Consequently, F

(
∂β((−2πx)βQsδ)

)
is analytic

and bounded. But

F
(
∂β((−2πx)βQsδ)

)
= (2πξ)βF((−2πx)βQsδ) = (2πξ)β∂βQ̂sδ(ξ),

which shows (6.29).
Now, by Leibniz' formula, (6.28) and (6.29),

|∂αg1(ξ)| ≤ Cα
∑
β≤α

∣∣∣∂βh(ξ)
∣∣∣ ∣∣∣∂α−βQ̂sδ(ξ)∣∣∣ ≤ Cα

|ξ||α|−1
, ξ ∈ Rn \ {0},

for some constant Cα > 0. Hence, if we multiply i partial derivatives of g1,
the order of which adds up |γ|, we obtain that

|Gi(ξ)| ≤
Cγ,i

|ξ||γ|−i
, ξ ∈ Rn \ {0},

for some constants Cγ,i > 0. On the other hand, by induction,∣∣∣f i)1 (t)
∣∣∣ ≤ Ci

ti+1
, i ∈ N, t > 0,

for some constants Ci > 0, and, hence,∣∣∣f i)1 ◦ g1(ξ)
∣∣∣ ≤ Ci(

|ξ|Q̂sδ(ξ)
)i+1

, i ∈ N, ξ ∈ Rn \ {0}.

From Proposition 6.3.8 we know that, for |ξ| ≥ 1,∣∣∣∣∣ 1

Q̂sδ(ξ)

∣∣∣∣∣ ≤ C |ξ|1−s ,
so

1(
|ξ|Q̂sδ(ξ)

)i+1
≤ C

|ξ|s(i+1)
.

Thus,

|∂γf | ≤
|γ|∑
i=1

∣∣∣f i)1 ◦ g1

∣∣∣ |Gi| ≤ Cγ |γ|∑
i=1

1

|ξ|s(i+1)+|γ|−i ≤
Cγ

|ξ|s(|γ|+1)
.

We conclude that, for |ξ| ≥ 1,∣∣∣∂αV̂ s
δ

∣∣∣ ≤ Cα∑
β≤α

∣∣∣∂βg∣∣∣ ∣∣∣∂α−βf ∣∣∣ ≤ Cα∑
β≤α

1

|ξ|s(|α|+1)+|β|(1−s) ≤
Cα

|ξ|s(|α|+1)
.
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The decay estimate of Lemma 6.3.12 is not optimal. In fact, a more re�ned
argument would possibly allow us to prove that the bound

|∂αQ̂sδ(ξ)| ≤
Cα

|ξ||β|+1−s , ξ ∈ Rn

holds. With that estimate, an adaptation of the proof of Lemma 6.3.12 would
yield ∣∣∣∂αV̂ s

δ (x)
∣∣∣ ≤ Cα

1 + |x||α|+s
.

Nevertheless, the bound of Lemma 6.3.12 is enough for our purposes in the
following theorem. Before that, we need the following inverse Lipschitz esti-
mate of the function x

|x|n−s+1 .

Lemma 6.3.13. Let 0 < s < 1. For every R1, R2 > 0 there exists m > 0
such that, for all x ∈ B(0, R1) \ {0} and h ∈ B(0, R2) \ {x},

m|h| ≤
∣∣∣∣ x

|x|n+1−s −
x− h

|x− h|n+1−s

∣∣∣∣ . (6.30)

Proof. We divide the proof into four cases, according to the position of the
points x and h. Let us de�ne G(x) = x

|x|n+1−s .

Case 1: 2|x| ≤ |x− h|. Taking

m ≤
1− 1

2n−s

Rn−s1 R2

we have

|G(x)−G(x− h)| ≥ 1

|x|n−s
− 1

|x− h|n−s
≥
(

1− 1

2n−s

)
1

|x|n−s

≥
1− 1

2n−s

Rn−s1

≥ mR2 ≥ m|h|.

Case 2: G(x) ·G(x− h) ≤ 0. Taking

m ≤ 1

Rn−s1 R2

we have

|G(x)−G(x− h)| =
(
|G(x)|2 + |G(x− h)|2 − 2G(x) ·G(x− h)

) 1
2 ≥ |G(x)|

=
1

|x|n−s
≥ 1

Rn−s1

≥ mR2 ≥ m|h|.
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G(x) G(x− h)

O

G(x) G(x− h)

O

Figure 6.1: Position of the points G(x), G(x − h) and the origin O when
(G(x− h)−G(x))·G(x−h) ≤ 0 (left) and when (G(x− h)−G(x))·G(x) ≥ 0
(right)

Case 3: |x− h| ≤ 2|x| and

min
{
|G(x)|2 , |G(x− h)|2

}
≤ G(x) ·G(x− h). (6.31)

We observe that the inverse of G is G−1(y) = y

|y|
n+1−s
n−s

, with derivative

DG−1(y) = |y|−
n−s+1
n−s −2y ⊗ y + |y|−

n−s+1
n−s I,

so
|DG−1(y)| ≤ 2|y|−

n−s+1
n−s . (6.32)

With this, using the mean value theorem,

|h| = |G−1(G(x))−G−1(G(x− h))|
≤
∥∥DG−1

∥∥
L∞([G(x),G(x−h)])

|G(x)−G(x− h)| .
(6.33)

Now,

‖DG−1‖L∞([G(x),G(x−h)]) ≤ 2 max
y∈[G(x),G(x−h)]

|y|−
n−s+1
n−s

= 2

(
min

y∈[G(x),G(x−h)]
|y|
)−n−s+1

n−s
.

Elementary geometry shows that

min
y∈[G(x),G(x−h)]

|y| =

{
|G(x− h)| if (G(x− h)−G(x)) ·G(x− h) ≤ 0,

|G(x)| if (G(x− h)−G(x)) ·G(x) ≥ 0;

(6.34)
see Figure 6.1. Assumption (6.31) asserts that one of these two options occurs,
so

min
y∈[G(x),G(x−h)]

|y| ≥ min {|G(x− h)| , |G(x)|}
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and, hence,(
min

y∈[G(x),G(x−h)]
|y|
)−n−s+1

n−s
≤ (min {|G(x− h)| , |G(x)|})−

n−s+1
n−s

= max{|x|n−s+1, |x− h|n−s+1}.

Finally, since |x− h| ≤ 2|x|,

max{|x|n−s+1, |x− h|n−s+1} ≤ 2n−s+1|x|n−s+1 ≤ 2n−s+1Rn−s+1
1 . (6.35)

Going back to (6.33), we �nd that |h| ≤ 2n−s+2Rn−s+1
1 |G(x)−G(x− h)|, so

inequality (6.30) holds for

m ≤ 1

2n−s+2Rn−s+1
1

.

Case 4: |x− h| ≤ 2|x| and

0 < G(x) ·G(x− h) < min
{
|G(x)|2 , |G(x− h)|2

}
. (6.36)

Note �rst that inequality (6.36) cannot occur in dimension n = 1.
Let γ : [0, 1]→ Rn be any piecewise C1 curve such that γ(0) = G(x) and

γ(1) = G(x− h). By the fundamental theorem of Calculus,

|h| =
∣∣G−1(γ(0))−G−1(γ(1))

∣∣ =

∣∣∣∣� 1

0

(
G−1 ◦ γ

)′
(t) dt

∣∣∣∣ ≤ max
γ([0,1])

∣∣DG−1
∣∣ `(γ),

(6.37)
where ` denotes the length of the curve.

Assumption (6.36) implies that none of the cases of (6.34) occurs (hence
none of the situations depicted in Figure 6.1), but the distance from the origin
to the segment [G(x), G(x−h)] is attained at a point P in the interior of the
segment. Assume that |G(x)−P | ≤ |G(x−h)−P |, although the construction
is totally analogous in the symmetric case |G(x)−P | ≥ |G(x−h)−P |. Let Q
be the point in the segment [G(x), G(x− h)] such that P is the middle point
between G(x) and Q. We de�ne the curve γ as follows. The curve γ starts at
G(x) and describes the arc of circumference of center the origin O and radius
|G(x)| joining G(x) with Q; among the two possible arcs, we choose that
which subtends an angle of less than π radians. Then, γ continues joining Q
and G(x − h) with a straight line. See Figure 6.2. For this particular γ we
estimate the right hand-side of (6.37). First, using (6.32),

max
γ([0,1])

∣∣DG−1
∣∣ ≤ 2 max

y∈γ([0,1])
|y|−

n−s+1
n−s = 2|G(x)|−

n−s+1
n−s , (6.38)
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O

θ

G(x)
P Q

γ

G(x− h)

Figure 6.2: The curve γ (in thick line), the points G(x), P,Q,G(x − h)
(aligned, in dotted line), the origin O and the angle θ

since, by construction of γ, the shortest distance of γ([0, 1]) to the origin is

|G(x)|. In order to estimate `(γ), let θ be the angle ̂G(x)OP if it is positive,

or else the opposite angle ̂P OG(x), so that

sin θ =
`([G(x), P ])

|G(x)|

and θ ∈ [0, π2 ] because 0 ≤ G(x) ·G(x− h). Then

`(γ) = 2θ |G(x)|+ `([Q,G(x− h)]).

Now we use the elementary inequality

t ≤ π

2
sin t, t ∈ [0,

π

2
]

to obtain that

2θ |G(x)| ≤ π sin θ |G(x)| = π `([G(x), P ]) =
π

2
`([G(x), Q]),

so

`(γ) ≤ π

2
`([G(x), Q]) + `([Q,G(x− h)]) ≤ π

2
`([G(x), G(x− h)]). (6.39)

Using (6.38) and (6.39), inequality (6.37) becomes

|h| ≤ π |G(x)|−
n−s+1
n−s `([G(x), G(x− h)]).

If we had assumed |G(x) − P | ≥ |G(x − h) − P | instead of |G(x) − P | ≤
|G(x− h)− P | we would have obtained

|h| ≤ π |G(x− h)|−
n−s+1
n−s `([G(x), G(x− h)]),
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so, in either case,

|h| ≤ π max
{
|G(x)|−

n−s+1
n−s , |G(x− h)|−

n−s+1
n−s

}
`([G(x), G(x− h)])

= π max
{
|x|n−s+1, |x− h|n−s+1

}
|G(x)−G(x− h)| .

Now we use (6.35) and �nd that inequality (6.30) holds for

m ≤ 1

2n−s+2πRn−s+1
1

.

Theorem 6.3.14. Let 0 < s < 1 and 0 < δ. Then there exists a radial
function V s

δ ∈ C∞(Rn \ {0},Rn) such that

V̂ s
δ (ξ) = −i ξ

|ξ|
1

|2πξ|Q̂sδ(ξ)
. (6.40)

Furthermore, we have the following properties:

a) There exists W ∈ Cb(Rn,Rn) (actually, W ∈ C0(Rn,Rn) when n ≥ 2)
such that

V s
δ (x) = W (x) +

cn,−s
a0

x

|x|n+1−s .

b) For each x ∈ Rn \ {0},

lim
λ→0+

λn−sV s
δ (λx) =

cn,−s
a0

x

|x|n+1−s .

c) For any R > 0 there exists M > 0 such that for all x ∈ B(0, R) \ {0},

|V s
δ (x)| ≤ M

|x|n−s
.

d) For every R1, R2 > 0 there existsM > 0 such that for all x ∈ B(0, R1)\{0}
and h ∈ B(0, R2) \ {x},

|V s
δ (x)− V s

δ (x− h)| ≤M
∣∣∣∣ x

|x|n+1−s −
x− h

|x− h|n+1−s

∣∣∣∣ .
Proof. We �rst prove that there exists a function V s

δ ∈ C∞(Rn\{0},Cn) such
that (6.40) holds.
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We start as in the proof of [66, Proposition 2.4.8]. In order to see that V s
δ

is C∞ away from the origin we will see that F(V̂ s
δ )(x) = Ṽ s

δ (x) = V s
δ (−x) is

CM in Rn \{0} for allM . Thus, �xM ∈ N and let α ∈ Nn be any multiindex
such that

s(|α|+ 1)− n ≥M. (6.41)

Now we take ϕ ∈ C∞(Rn) such that ϕ = 1 in B(0, 2)c and ϕ = 0 in B(0, 1).
Write u = V̂ s

δ , u0 = (1 − ϕ)u and u∞ = ϕu. On the one hand, ∂αu =
∂αu0 + ∂αu∞ in the sense of distributions and also in Rn \ {0}. On the other
hand, as u is smooth outside the origin, we have that ∂αu∞ is smooth and
can calculate

∂αu∞ =
∑
β≤α

(
α

β

)
∂α−βϕ∂βu.

Write

v = ∂αu0 +
∑
β≤α
β 6=α

(
α

β

)
∂α−βϕ∂βu. (6.42)

Then v is a distribution with support in B(0, 2), so v̂ is C∞. Moreover,
∂αu = v + ϕ∂αu. Thus, in order to see that ∂̂αu is CM it remains to show
that ϕ̂ ∂αu is CM . The function ϕ∂αu is C∞ and, by Lemma 6.3.12,

|ϕ(ξ)∂αu(ξ)| ≤ Cα

1 + |ξ|s(|α|+1)
, ξ ∈ Rn, (6.43)

Having in mind (6.41), a classical result shows that ϕ̂ ∂αu is CM .

Once we have shown that ∂̂αu is CM , we note that ∂̂αu(ξ) = (2πiξ)αû(ξ).
Let ξ ∈ Rn \ {0}; then ξj 6= 0 for some j ∈ {1, . . . ,M}. Let V be a neigh-
bourhood of ξ such that every η ∈ V satis�es ηj 6= 0. Let m ∈ N be such
that s(m + 1) − n ≥ M and let α be the multiindex (0, . . . , 0,m, 0, . . . , 0),
with the component m in position j. Then α satis�es (6.41). Moreover, for
any η ∈ V ,

û(η) =
∂̂αu(η)

(2πiηj)m
,

so û is of class CM in Rn\{0} for every M ∈ N, and therefore, so is V s
δ .

Once we have that V s
δ is a function, since V̂ s

δ is radial and imaginary-
valued, standard properties of the Fourier transform show that V s

δ must be
radial a real-valued.
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Now we show the decay of V s
δ at in�nity. Case n = 1 is tackled in Theorem

6.3.17. So, let n > 1, recall that

V̂ s
δ (ξ) = −i ξ

|ξ|
1

|2πξ|Q̂sδ
.

We have that V s
δ = F−1(V̂ s

δ ), so V s
δ (−x) = F(V̂ s

δ )(x). Now, by Lemma
6.3.18

V s
δ (−x) = F

(
V̂ s
δ −

−iξ
a0|ξ|

1

|2πξ|s
+
−iξ
a0|ξ|

1

|2πξ|s

)
= F

(
V̂ s
δ −

−iξ
a0|ξ|

1

|2πξ|s

)
+
cn,−s
a0

−x
|x|n+1−s .

Consequently, if we show that V̂ s
δ −

−iξ
a0|ξ|

1
|2πξ|s is in L1, its Fourier transform

will be in C0(Rn). Therefore, the growth of V s
δ around 0 will be given by that

of cn,−sa0

x
|x|n+1+s , so the desired estimated will be shown.

In order to show that V̂ s
δ −

−iξ
a0|ξ|

1
|2πξ|s is in L1, we �rst notice that it is in

L1
loc(Rn \ {0}), since it is in C(Rn \ {0}). It is also in L1(B(0, R)) for any

R > 0 since both V̂ s
δ and −iξ

a0|ξ|
1

|2πξ|s are in L1(B(0, R)). Hence, it remains to

show the integrability of V̂ s
δ −

−iξ
a0|ξ|

1
|2πξ|s at in�nity.

We will see that, in fact, the decay of V̂ s
δ −

−iξ
a0|ξ|

1
|2πξ|s at in�nity is faster

than any negative power of |ξ|. For this we observe that

V̂ s
δ (ξ)− −iξ

a0|ξ|
1

|2πξ|s
= −iξ

ξ

1

|2πξ|Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

= −i ξ
|ξ|
a0|2πξ|−1+s − Q̂sδ(ξ)

a0|2πξ|sQ̂sδ(ξ)
.

(6.44)

The terms |2πξ|s and Q̂sδ(ξ) in the denominator above only contribute as a
power of |ξ| in the growth at in�nity (see Proposition 6.3.8). Therefore, it
remains to show that the numerator above a0|2πξ|−1+s− Q̂sδ(ξ) decays faster
at in�nity than any negative power of |ξ|. Recall that F

(
1

γα|x|n−α

)
(ξ) =

|2πξ|−α. Now we consider a ϕ ∈ C∞c (Rn) with ϕB(0, 1
4

) = 1 and ϕB(0, 1
2

)c = 0.
Then,

a0|2πξ|−1+s − Q̂sδ(ξ) =

F
(

a0

γ(1− s)|x|n−1+s
−Qsδ(x)

)
=

F
(

a0ϕ

γ(1− s)|x|n−1+s
−Qsδ(x)

)
+ F

(
a0(1− ϕ)

γ(1− s)|x|n−1+s

)
.
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Looking at the expression of Qsδ (Lemma 6.3.2), we notice that the di�er-
ence between a0ϕ

γ(1−s)|x|n−1+s and Qsδ(x) coincide with the constant −z0
γ(1−s) in

B(0,min{b0δ, 1
4}), and both have compact support. Therefore, its di�erence

is a smooth function of compact support. In particular, it is in the Schwartz
space, as well as its Fourier transform:

F
(

a0ϕ

γ(1− s)|x|n−1+s
−Qsδ(x)

)
∈ S.

On the other hand, the function F
(

1−ϕ
γ(1−s)|x|n−1+s

)
is treated in [66, Ex. 2.4.9],

and it is concluded that its decay at in�nity is faster than any negative power
of |ξ|.

We have concluded that there exists W ∈ C0(Rn,Rn) such that

V s
δ (x) = W (x) +

cn,−s
a0

x

|x|n+1−s .

With this we have that for each x ∈ Rn \ {0}, h ∈ Rn \ {x} and λ > 0,

λn−sV s
δ (λx) = λn−sW (λx) +

cn,−s
a0

x

|x|n+1−s ,

so
lim
λ→0+

λn−sV s
δ (λx) =

cn,−s
a0

x

|x|n+1−s .

We also have that given R > 0, for all x ∈ B(0, R) \ {0},

|V s
δ (x)| ≤ ‖W‖∞,B(0,R) +

cn,−s
a0

1

|x|n−s
≤
(
‖W‖∞R

n−s +
cn,−s
a0

)
1

|x|n−s
.

As for the inequality d), we �rst prove that W is Lipschitz. We know
that W is C∞(Rn \ {0}). In addition, the proof above shows that W (x) =
F(Z)(−x) with Z(ξ) := V̂ s

δ (ξ) − −iξ
a0|ξ|

1
|2πξ|s , whose decay at in�nity is faster

than any negative power of |ξ|. Thus, ∇W (x) = F(2πiξZ(ξ))(−x). Since
2πiξZ(ξ) is integrable then F(2πiξZ(ξ)) is bounded, so W is Lipschitz.

Once we know that W is Lipschitz, we estimate

|V s
δ (x)− V s

δ (x− h)| ≤ ‖DW‖L∞(Rn)|h|+
|cn,−s|
a0

∣∣∣∣ x

|x|n+1−s −
x− h

|x− h|n+1−s

∣∣∣∣
≤M

∣∣∣∣ x

|x|n+1−s −
x− h

|x− h|n+1−s

∣∣∣∣ ,
for a suitable constant M > 0 coming from Lemma 6.3.13. The proof is
complete.
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Remark 6.3.1. It can also be proved (and easy to see heuristically) that for
each x ∈ Rn \ {0},

lim
λ→∞

λn−1V s
δ (λx) =

cn,−1

‖Qsδ‖L1

x

|x|n
.

Nevertheless it is not going to be needed in this work.

Now we can provide the proof of Proposition 6.3.5.

Proof of Proposition 6.3.5. Given the function V s
δ from Theorem 6.3.14 we

want to check the equality�
Rn
V s
δ (z)Qsδ(y − z)dz =

1

σn−1

y

|y|n
, y ∈ Rn.

In order to do so, we are going to see the equality of the Fourier transforms
of both terms. Notice that V s

δ and Qsδ can be seen as tempered distributions,
and, in particular, Qsδ with compact support. Hence, by Lemmas 6.3.20 and
6.3.19 we have that the desired equality is equivalent to

V̂ s
δ (ξ)Q̂sδ(ξ) = −i ξ

|ξ|
1

|2πξ|

which holds by (6.40) and the result follows.

Technical results

The next lemma is used in Proposition 6.3.10.

Lemma 6.3.15. Let 0 < s < 1 and 0 < δ. Then

∇QsδχB(0,ε)c → ∇Qsδ in S ′ as ε→ 0.

Proof. We recall that ∇Qsδ(x) = −(n + s − 1)ρδ(x)
|x|

x
|x| . Fix j ∈ {1, . . . , n}:

we shall prove the desired convergence for the j-th component of ∇Qsδ. Let
ϕ ∈ S. Using the notation B±j (0, ε)c = {x ∈ B(0, ε)c : ±xj > 0} and w̄δ for
the radial representation of wδ we have�
B(0,ε)c

xj
|x|n+s+1

w̄δ(x)ϕ(x) dx =

�
B−j (0,ε)c

xj
|x|n+s+1

w̄δ(x)ϕ(x) dx

+

�
B+
j (0,ε)c

xj
|x|n+s+1

w̄δ(x)ϕ(x) dx

=

�
B+
j (0,ε)c

xj
|x|n+s+1

w̄δ(x)(ϕ(x)− ϕ(−x)) dx.
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By the mean value theorem,∣∣∣∣ xj
|x|n+s+1

w̄δ(x)(ϕ(x)− ϕ(−x))χB+
j (0,ε)c(x)

∣∣∣∣ ≤ 2‖∇ϕ‖∞‖w̄δ‖∞
|x|n+s−1

χB(0,δ)(x).

By dominated convergence we obtain that
�
B+
j (0,ε)c

xj
|x|n+s+1

w̄δ(x)(ϕ(x)− ϕ(−x)) dx

converges to �
{xj>0}

xj
|x|n+s+1

w̄δ(x)(ϕ(x)− ϕ(−x)) dx

as ε→ 0. This proves that
�
B(0,ε)c

xj
|x|n+s+1

w̄δ(x)ϕ(x) dx→
�

xj
|x|n+s+1

w̄δ(x)ϕ(x) dx

and the conclusion follows.

1-dimensional case

In this appendix we treat the particular case of determining V s
δ when n = 1.

Before doing so we provide an auxiliary result necessary to prove the following
theorem.

Lemma 6.3.16. Let 0 < s < 1, δ > 0 and n = 1. Then the function
Z(ξ) := V̂ s

δ (ξ)− −iξ
a0|ξ|

1
|2πξ|s can be identi�ed with the tempered distribution

〈Z,ϕ〉 =

� ∞
0

Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ, ϕ ∈ S (6.45)

and we have the convergence

ZχB(0,ε)c → Z in S ′ as ε→ 0. (6.46)

Proof. Let us see that formula (6.45) de�nes a tempered distribution. By
Propositions 6.3.8 and 6.3.10, there exists C > 0 such that

|Z(ξ)| ≤ 1

2π|ξ|
1

Q̂sδ(ξ)
+

1

a0

1

|2πξ|s
≤ C

|ξ|
, |ξ| ≤ 1.

Thus, by the mean value theorem∣∣∣∣� 1

0
Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ

∣∣∣∣ ≤ 2C‖ϕ′‖∞. (6.47)
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On the other hand, in the proof of Theorem 6.3.14, and, concretely, (6.44),
we saw that Z decays to 0 at in�nity faster than any negative power of ξ. In
particular,

|Z(ξ)| ≤ C

1 + |ξ|2
, |ξ| ≥ 1.

Consequently,∣∣∣∣� ∞
1

Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ
∣∣∣∣ ≤ 2C

� ∞
1

1

1 + ξ2
dξ ‖ϕ‖∞. (6.48)

Estimates (6.47) and (6.48) show that Z de�ned by (6.45) is in S ′.
As explained before, the fact that Z decays to 0 at in�nity faster than any

negative power of ξ implies that ZχB(0,ε)c ∈ L1(R) for all ε > 0. In particular,
ZχB(0,ε)c considered as a distribution acts as follows: for each ϕ ∈ S,

〈ZχB(0,ε)c , ϕ〉 =

�
B(0,ε)c

Z(ξ)ϕ(ξ) dξ =

� ∞
ε

Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ.

As we saw above, the function Z(ξ)(ϕ(ξ) − ϕ(−ξ)) is in L1((0,∞)), so, by
dominated convergence we have that
� ∞
ε

Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ →
� ∞

0
Z(ξ)(ϕ(ξ)− ϕ(−ξ)) dξ as ε→ 0,

which justi�es the identi�cation of the function Z with the distribution (6.45)
and shows the convergence (6.46).

The following is the one-dimensional version of Theorem 6.3.14.

Theorem 6.3.17. Let 0 < s < 1, 0 < δ and n = 1. Then there exists a
real-valued function V s

δ ∈ C∞(R \ {0}) whose Fourier transform is given by

V̂ s
δ (ξ) =

−iξ
2π|ξ|2

1

Q̂sδ(ξ)
.

Actually, there exists W ∈ Cb(R) such that

V s
δ (x) = W (x) +

c1,−s
a0

x

|x|2−s
. (6.49)

In addition, V s
δ ∈ L1

loc(R) and

a) lim|x|→∞ sgn(x)V s
δ (x) = 1

2‖Qsδ‖L1(R)
, where sgn is the sign function.
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b) limx→0 sgn(x)|x|1−sV s
δ (x) =

c1,−s
a0

.

c) For any R > 0 there exists M > 0 such that for all x ∈ B(0, R) \ {0},

|V s
δ (x)| ≤ M

|x|1−s
.

d) For every R1, R2 > 0 there existsM > 0 such that for all x ∈ B(0, R1)\{0}
and h ∈ B(0, R2) \ {x},

|V s
δ (x)− V s

δ (x− h)| ≤M
∣∣∣∣ x

|x|2−s
− x− h
|x− h|2−s

∣∣∣∣ .
Proof. The existence of V s

δ ∈ C∞(R\{0}) as the Fourier transform of V̂ s
δ was

given by the �rst part of Theorem 6.3.14, which is valid for n = 1. Thus, we
start with (6.49).

As in Theorem 6.3.14, we compute the Fourier transform in the following
way using Lemma 6.3.18

V (−x) = F
(
V̂ s
δ −

−iξ
a0|ξ|

1

|2πξ|s
+
−iξ
a0|ξ|

1

|2πξ|s

)
(x)

= F
(
V̂ s
δ −

−iξ
a0|ξ|

1

|2πξ|s

)
(x) +

cn,−s
a0

−x
|x|2−s

where, despite V̂ s
δ not being integrable around zero, we are going to see that

the function

W̃ (x) :=

�
R

(
− iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

)
(−i) sin(2πξx) dξ (6.50)

is well de�ned as a Lebesgue integral and is the Fourier transform of Z(ξ) :=
V̂ s
δ (ξ) − −iξ

a0|ξ|
1

|2πξ|s . Actually, the same argument used in Theorem 6.3.14 a)
(see the argument following (6.44)) shows that Z(ξ) goes to 0 at in�nity faster
than any negative power of ξ; consequently, we just have to focus on the local
integrability of the integrand in (6.50), which is in fact given by the inequality∣∣∣∣∣
(
− iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

)
(−i) sin(2πξx)

∣∣∣∣∣ ≤
∣∣∣∣∣sin(2πξx)

2πξQ̂sδ(ξ)

∣∣∣∣∣+
1

a0|2πξ|s

≤ |x|
Q̂sδ(ξ)

+
1

a0|2πξ|s
,

(6.51)
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with the right-hand side being locally integrable in ξ. This gives us the
Lebesgue integrability of the integrand in (6.50). With respect to the Fourier
transform of Z we argue as in Proposition 6.3.10 with equation (6.24). As ex-
plained in Lemma 6.3.16, ZχB(0,ε)c ∈ L1(R) for all ε > 0 and Z is considered
as a tempered distribution via formula (6.45). Moreover,

ZχB(0,ε)c → Z in S ′ as ε→ 0,

so, by the continuity of the Fourier transform in S ′

F
(
ZχB(0,ε)c

)
→ F (Z) in S ′ as ε→ 0.

We now compute

F
(
ZχB(0,ε)c

)
(x) =

�
B(0,ε)c

(
− iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

)
e−2πiξx dξ

=

�
B(0,ε)c

(
− iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

)
(−i) sin(2πξx) dξ,

where we have used the odd symmetry. Now, by (6.51) and the decay of Z,
we have that |Z(ξ) sin(2πξx)| is integrable in ξ ∈ R. Therefore,

�
B(0,ε)c

(
− iξ

2π|ξ|2
1

Q̂sδ(ξ)
− −iξ
a0|ξ|

1

|2πξ|s

)
(−i) sin(2πξx) dξ

converges to �
−iZ(ξ) sin (2πξx) dξ, as ε→ 0.

This proves that W̃ = F(Z) and so, we �nally take W (x) = W̃ (−x).

The function W is C∞(R \ {0}) as a di�erence of two C∞(R \ {0}) func-
tions. Let us see that W is continuous, so let us check its continuity at 0.
From (6.50) we have the formula

W (x) =

� (
ξ

2π|ξ|2
1

Q̂sδ(ξ)
− ξ

a0|ξ|
1

|2πξ|s

)
sin(2πξx) dξ.
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For |x| ≤ 1, we have the bound∣∣∣∣∣
(

ξ

2π|ξ|2
1

Q̂sδ(ξ)
− ξ

a0|ξ|
1

|2πξ|s

)
sin(2πξx)

∣∣∣∣∣ ≤(∣∣∣∣∣sin(2πξx)

2πξQ̂sδ(ξ)

∣∣∣∣∣+
1

a0|2πξ|s

)
χB(0,1)(ξ) + |Z(ξ)|χB(0,1)c(ξ) ≤(

1

Q̂sδ(ξ)
+

1

a0|2πξ|s

)
χB(0,1)(ξ) + |Z(ξ)|χB(0,1)c(ξ)

with �
B(0,1)

(
1

Q̂sδ(ξ)
+

1

a0|2πξ|s

)
dξ +

�
B(0,1)c

|Z(ξ)| dξ <∞,

which allows us to use dominated convergence and obtain that limx→0W (x) =
0 = W (0).

Now we prove that W is bounded. To that end, we study its behaviour
at in�nity, for which it is useful to introduce the function

Y (ξ) = − iξ

2π|ξ|2
1

Q̂sδ(0)
χB(0,1)(ξ)

and express

W̃ = F(ZχB(0,1) − Y ) + F(Y ) + F(ZχB(0,1)c).

Since ZχB(0,1)c ∈ L1(R), by the Riemann�Lebesgue Lemma F(ZχB(0,1)c) ∈
C0(R). Now we study the function

ZχB(0,1)(ξ)−Y (ξ) =

[
− iξ

2π|ξ|2

(
1

Q̂sδ(ξ)
− 1

Q̂sδ(0)

)
− −iξ
a0|ξ|

1

|2πξ|s

]
χB(0,1)(ξ).

Now, for ξ ∈ B(0, 1), by the mean value theorem,

∣∣∣∣∣− iξ

2π|ξ|2

(
1

Q̂sδ(ξ)
− 1

Q̂sδ(0)

)∣∣∣∣∣ ≤ 1

2π
sup
B(0,1)

(
Q̂sδ

)′
(
Q̂sδ

)2 <∞,

and, on the other hand, ∣∣∣∣ −iξa0|ξ|
1

|2πξ|s

∣∣∣∣ ≤ 1

a0

1

|2πξ|s
,
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which is integrable inB(0, 1). Therefore, ZχB(0,1)−Y ∈ L1(R), so F(ZχB(0,1)−
Y ) ∈ C0(R). Consequently, the limit at in�nity of W̃ is the same as that of
F(Y ), which we analyze now. By odd symmetry,

F(Y )(−x) =
1

πQ̂sδ(0)

� 1

0

1

ξ
sin(2πξx) dξ =

1

πQ̂sδ(0)

� x

0

1

ξ
sin(2πξ) dξ.

This latter function is known to be bounded, and, in fact,
� ∞

0

1

ξ
sin(2πξ) dξ =

π

2
,

so

lim
x→+∞

W (x) = lim
x→+∞

W̃ (−x) = lim
x→+∞

F(Y )(−x) =
1

2Q̂sδ(0)
=

1

2‖Qsδ‖L1(Rn)
.

This proves that W is bounded and also limit a).
Combining (6.49) and W ∈ Cb(R) we have limit b). This limit and the

fact V s
δ ∈ C∞(R \ {0}) implies property c).

Part d) is proved with the same argument as in Theorem 6.3.14.

Fourier analysis auxiliary results

In this appendix we collect together several Fourier analysis results needed
throughout the chapter. First, we recall the following de�nitions and proper-
ties.

Remark 6.3.2. Let u, v ∈ S ′. For each f : Rn → R, we de�ne f̃(x) := f(−x)
for every x ∈ Rn.

a) ṽ ∈ S ′ is de�ned as

〈ṽ, ϕ〉 = 〈v, ϕ̃〉 ∀ϕ ∈ S.

b) Assume that ṽ ∗ ϕ ∈ S for every ϕ ∈ S. Then the tempered distribution
v ∗ u is de�ned as

〈v ∗ u, ϕ〉 = 〈u, ṽ ∗ ϕ〉 ∀ϕ ∈ S.

c) We have that F(v̂) = ṽ.

We now compute the Fourier transform of the vectorial version of the
Riesz potential.
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Lemma 6.3.18. a) Let n ≥ 2, 0 < α < n− 1 and j ∈ {1, . . . , n}. Then

n− α− 1

γ(1 + α)

x̂j
|x|n−α+1

(ξ) = −i ξj
|ξ|
|2πξ|−α = −i ξj

|ξ|
Îα. (6.52)

b) If n = 1 and 0 < s < 1, then

c1,−s
x̂

|x|2−s
= − iξ
|ξ|

1

|2πξ|s
.

Proof. On the one hand, we have that

1

γ(1 + α)

∂

∂xj

1

|x|n−(α+1)
= −n− α− 1

γ(1 + α)

xj
|x|n−α+1

.

Thus,

1

γ(1 + α)

̂(
∂

∂xj

1

|x|n−(α+1)

)
(ξ) = −n− α− 1

γ(1 + α)

x̂j
|x|n−α+1

(ξ), (6.53)

whereas, on the other hand, by standard properties of the Fourier transform,

1

γ(1 + α)

̂(
∂

∂xj

1

|x|n−(α+1)

)
(ξ) = 2πiξj Î1+α = 2πiξj |2πξ|−(1+α) = i

ξj
|ξ|
|2πξ|−α.

(6.54)
Putting together (6.53) and (6.54) we obtain the conclusion of a).

Now we present the proof of b). We recall the formula of the fractional
version of the fundamental theorem of Calculus (Theorem 3.5.1) (see also [38,
Th. 3.11], [99, Th. 1.12] or [92, Prop. 15.8]), where, for every u ∈ C∞c (R),

u(x) = c1,−s

�
Dsu(y)

x− y
|x− y|2−s

dy.

Next, we take Fourier transform and use the formula for the convolution of a
distribution with a Schwartz function:

û(ξ) = D̂su(ξ)F
(
c1,−s

x

|x|2−s

)
=

2πiξ

|2πξ|
|2πξ|sû(ξ)F

(
c1,−s

x

|x|2−s

)
where we have used the Fourier transform of Dsu (see Lemma 3.1.7 ). Now,
we multiply both terms by −i2πξ and obtain that

−i2πξû(ξ) = |2πξ|1+sû(ξ)F
(
c1,−s

x

|x|2−s

)
.

Since that equality holds for every u ∈ C∞c (R), the statement follows.
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The following Fourier transform is obtained.

Lemma 6.3.19. The following equality holds:

F
(

1

σn−1

x

|x|n

)
(ξ) = −i ξ

|ξ|
1

|2πξ|
.

Proof. Since 1
σn−1

x
|x|n ∈ L

1(B(0, 1)) + L∞(B(0, 1)c) we have that 1
σn−1

x
|x|n ∈

S ′, and so does its Fourier transform. Let ϕ ∈ C∞c (Rn). We apply the Fourier
transform to the representation formula of Proposition 6.3.1, obtaining that

ϕ̂(ξ) = ∇̂ϕ(ξ) · F
(

x

σn−1|x|n

)
(ξ) = 2πiξϕ̂(ξ) · F

(
x

σn−1|x|n

)
(ξ).

Since this is true for every ϕ ∈ C∞c (Rn) we infer that

1 = 2πiξ · F
(

x

σn−1|x|n

)
(ξ).

Therefore, there exists a function G : Rn → Rn such that ξ ·G(ξ) = 0 and

F
(

x

σn−1|x|n

)
(ξ) = −i ξ

|ξ|
1

|2πξ|
+G(ξ).

On the other hand, F
(

x
σn−1|x|n

)
must be a vector radial function, as the

Fourier transform of a vector radial function. Consequently (recall De�nition
6.1.5), there exists g : Rn → R such that G(ξ) = ξ g(ξ). Thus, |ξ|2g(ξ) = 0,
so g = 0 and, hence, G = 0 a.e. The proof is concluded.

Lemma 6.3.20. Let V,Q ∈ S ′ be such that Q is a distribution with compact
support. Then

V̂ ∗Q = V̂ Q̂.

Proof. Firstly, we recall that the convolution V ∗Q is well de�ned since Q̃∗ϕ ∈
S for every ϕ ∈ S [66, Theorem 2.3.20], and its action is de�ned as

〈V ∗Q,ϕ〉 = 〈V, ϕ ∗ Q̃〉 for every ϕ ∈ S,

where we are using the notation Q̃ from Remark 6.3.2. Now, by de�nition
of the Fourier transform in the sense of distributions, we have that, for every
ϕ ∈ S,

〈V̂ ∗Q,ϕ〉 = 〈V ∗Q, ϕ̂〉 = 〈V, ϕ̂ ∗ Q̃〉. (6.55)
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Next, by the Fourier transform of a convolution (of a distribution times a
Schwartz function),

ϕ̂ ∗ Q̃ = F(ϕF−1(Q̃)) = F(ϕQ̂),

since F−1(Q̃) = Q̂ (Remark 6.3.2). This also tells us that ϕQ̂ belongs to
S because so does ϕ̂ ∗ Q̃ (by the bijection of the Fourier transform in S).
Actually, it is known that Q̂ is a smooth function (see [66, Theorem 2.3.21]).
Therefore, continuing with (6.55) and using again the duality of the Fourier
transform,

〈V̂ ∗Q,ϕ〉 = 〈V, ϕ̂ ∗ Q̃〉 = 〈V,F(ϕQ̂)〉 = 〈V̂ , ϕQ̂〉.

As ϕQ̂ ∈ S, the product V̂ Q̂ is well de�ned in a distributional sense and

〈V̂ Q̂, ϕ〉 = 〈V̂ , ϕQ̂〉 = 〈V̂ ∗Q,ϕ〉.

As a consequence, the statement holds.

6.4 Nonlocal Poincarè and Sobolev inequalities and

Compact Embedding

In this section we will use this nonlocal fundamental theorem of calculus
(Theorem 6.3.6) to prove compact embeddings of the spaces Hs,p,δ with a
complementary-value condition into Lq spaces, as well as a Poincaré inequality
for functions in the spaceHs,p,δ(Ω) which vanishes in a tubular neighbourhood
of the boundary.

Recall the set Ω−δ = {x ∈ Ω : dist(x, ∂Ω) > δ}. We de�ne the subspace
Hs,p,δ

0 (Ω−δ) as the closure of C∞c (Ω−δ) in Hs,p,δ(Ω):

Hs,p,δ
0 (Ω−δ) = C∞c (Ω−δ)

Hs,p,δ(Ω)
.

It is immediate to check that any u ∈ Hs,p,δ
0 (Ω−δ) satis�es u = 0 a.e. in

Ωδ \ Ω−δ. In addition, given g ∈ Hs,p,δ(Ω) we de�ne the a�ne subspace
Hs,p,δ
g (Ω−δ) as g + Hs,p,δ

0 (Ω−δ). In this section we will use several times the
observation that suppDs

δu ⊂ suppu+B(0, δ).

Next we prove the Poincaré�Sobolev inequality inHs,p,δ
0 (Ω−δ). This result

is known in the fractional case, i.e., for the space Hs,p(Rn), which is stated
in Theorem 3.5.3 (see [99, Th. 1.8] or [21, Theorem 2.2]).
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Theorem 6.4.1. Let 0 < s < 1, δ > 0 and 1 < p < ∞ with sp < n. Then,
there exists C > 0 such that for all u ∈ Hs,p,δ

0 (Ω−δ),

‖u‖Lq(Ω) ≤ C ‖D
s
δu‖Lp(Ω)

for every q ∈ [1, p∗s], where p
∗
s = np

n−sp .

Proof. By density, it is enough to prove the inequality for u ∈ C∞c (Ωδ).
Fix x ∈ Ω and let C > 0 denote a constant whose value may vary through

this process. Notice that by Proposition 6.3.3,Ds
δu ∈ C∞(Rn) and since u = 0

in Ωδ \Ω−δ, we have suppDs
δu ⊂ Ω. By Theorem 6.3.6 and Proposition 6.3.5,

|u(x)| ≤
�

Ω
|Ds

δu(y)||V s
δ (x− y)| dy ≤ C

�
Ω

|Ds
δu(y)|

|x− y|n−s
dy = C (Is ∗ |Ds

δu|) (x).

On the other hand, by the Hardy�Littlewood�Sobolev inequality we have that

‖Is ∗ |Ds
δu|‖Lp∗s (Rn) ≤ C‖D

s
δu‖Lp(Rn).

Therefore, for every q ∈ [1, p∗s], using that suppu ⊂ Ω−δ,

‖u‖Lq(Ω) ≤ C‖u‖Lp∗s (Ω) ≤ C‖Is ∗ |D
s
δu|‖Lp∗s (Rn) ≤ C‖D

s
δu‖Lp(Rn)

= C ‖Ds
δu‖Lp(Ω) .

As a corollary, it is obtained a nonlocal Poincaré inequality.

Theorem 6.4.2. Let 0 < s < 1, 0 < δ, and 1 < p < ∞. Then there exists
C > 0 such that

‖u‖Lp(Ω) ≤ C ‖D
s
δu‖Lp(Ω) ∀u ∈ Hs,p,δ

0 (Ω−δ).

Proof. If sp < n, the result is a particular case of Theorem 6.4.1. If sp ≥ n
and n ≥ 2, we take q = np

n+sp , which satis�es

1 < q < p, sq < n and q∗s = p.

By Theorem 6.4.1, we have the inequality

‖u‖Lp(Ω) = ‖u‖Lq∗ (Ω) ≤ C ‖D
s
δu‖Lq(Ω) ≤ C ‖D

s
δu‖Lp(Ω) .

If sp ≥ n and n = 1 we take any q satisfying

1 < q < p, sq < n and q∗s ≥ p,

which is easily seen to exist. The proof is concluded analogously.
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Next we introduce a nonlocal analogue of Morrey inequality, whose frac-
tional version was shown in Theorem 3.5.7, [99, Theorem 1.11].

Theorem 6.4.3. Let 0 < δ, 0 < s < 1 and 1 < p < ∞ be such that sp > n.
Then there exists C > 0 such that for all u ∈ Hs,p,δ

0 (Ω−δ)

|u(x)− u(y)| ≤ C|x− y|s−
n
p ‖Ds

δu‖Lp(Ω), a.e. x, y ∈ Ω.

In addition, any u ∈ Hs,p,δ
0 (Ω−δ) has a representative which is Hölder continu-

ous of exponent s− n
p , and the continuous inclusion Hs,p,δ

0 (Ω−δ) ⊂ C0,s−n
p (Ω)

holds.

Proof. Let C = C(n, s, δ, p, |Ω|) denote a constant whose value may vary
through the di�erent steps.

By a standard density argument, it is enough to prove that

|u(x)− u(y)| ≤ C|x− y|s−
n
p ‖Ds

δu‖Lp(Ω), x, y ∈ Ω

for all u ∈ C∞c (Ω−δ). Fix x, y ∈ Ω. By Theorem 6.3.6, and later by Theorem
6.3.14 d) there exists C > 0 such that

|u(x)− u(y)| =
∣∣∣∣�

Rn
Ds
δu(z)V s

δ (x− z)dz −
�
Rn
Ds
δu(z)V s

δ (y − z)dz
∣∣∣∣

≤
�

Ω
|V s
δ (x− z)− V s

δ (y − z)| |Ds
δu(z)|dz

≤ C
�

Ω

∣∣∣∣ x− z
|x− z|n+1−s −

y − z
|y − z|n+1−s

∣∣∣∣ |Ds
δu(z)|dz.

(6.56)

Now de�ne r := |x− y|. We have

|u(x)− u(y)| ≤C
�
B(x,2r)

|x− z|s−n |Ds
δu(z)|dz

+ C

�
B(x,2r)

|y − z|s−n |Ds
δu(z)|dz

+ C

�
B(x,2r)c

∣∣∣∣ x− z
|x− z|n+1−s −

y − z
|y − z|n+1−s

∣∣∣∣ |Ds
δu(z)|dz.

(6.57)
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For the �rst term we have that by Hölder's inequality,�
B(x,2r)

|x− z|s−n |Ds
δu(z)|dz ≤(�

B(x,2r)
|x− z|(s−n)p′ dz

) 1
p′
(�

B(x,2r)
|Ds

δu(z)|pdz

) 1
p

≤

2
1−n

p

(
σn−1(p− 1)

sp− n

) 1
p′

r
s−n

p ‖Ds
δu‖Lp(Rn) ,

(6.58)

since, as n+ (s− n)p′ = sp−n
p−1 > 0,(�

B(x,2r)
|x− z|(s−n)p′ dz

) 1
p′

=

(
σn−1(p− 1)

sp− n

) 1
p′

(2r)
s−n

p

≤ 2
1−n

p

(
σn−1(p− 1)

sp− n

) 1
p′

r
s−n

p .

Now, with respect to the second term, since B(x, 2r) ⊂ B(y, 3r), we have�
B(x,2r)

|y − z|s−n |Ds
δu(z)|dz ≤

�
B(y,3r)

|y − z|s−n |Ds
δu(z)|dz

≤

(�
B(y,3r)

|y − z|(s−n)p′

) 1
p′

dy ‖Ds
δu‖Lp(Rn)

≤ 3
1−n

p

(
σn−1(p− 1)

sp− n

) 1
p′

r
s−n

p ‖Ds
δu‖Lp(Rn) .

(6.59)

Finally, so as to tackle the last term, by the fundamental theorem of
Calculus,∣∣∣∣ x− z
|x− z|n+1−s −

y − z
|y − z|n+1−s

∣∣∣∣ =

∣∣∣∣� 1

0

d

dt

tx+ (1− t)y − z
|tx+ (1− t)y − z|n+1−s dt

∣∣∣∣
=

∣∣∣∣ � 1

0
(n+ 1− s) [tx+ (1− t)y − z][(tx+ (1− t)y − z) · (x− y)]

|tx+ (1− t)y − z|n+3−s

− x− y
|tx+ (1− t)y − z|n+1−s dt

∣∣∣∣
≤
� 1

0

[
(n+ 1− s) r

|tx+ (1− t)y − z|n+1−s +
r

|tx+ (1− t)y − z|n+1−s

]
dt

= (n+ 2− s)r
� 1

0

1

|tx+ (1− t)y − z|n+1−sdt,
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so �
B(x,2r)c

∣∣∣∣ x− z
|x− z|n+1−s −

y − z
|y − z|n+1−s

∣∣∣∣ |Ds
δu(z)| dz ≤

(n+ 2− s)r
� 1

0

�
B(x,2r)c

|tx+ (1− t)y − z|s−n−1 |Ds
δu(z)| dz dt.

By Hölder's inequality,�
B(x,2r)c

|tx+ (1− t)y − z|s−n−1 |Ds
δu(z)| dz

≤

(�
B(x,2r)c

|tx+ (1− t)y − z|(s−n−1)p′ dz

) 1
p′

‖Ds
δu‖Lp(Rn) .

Since B(tx+ (1− t)y, r) ⊂ B(x, 2r) for all t ∈ [0, 1], we have�
B(x,2r)c

|tx+ (1− t)y − z|(s−n−1)p′ dy ≤
�
B(tx+(1−t)y,r)c

|tx+ (1− t)y − z|(s−n−1)p′ dz =

σn−1

(n+ 1− s)p′ − n
rn+(s−n−1)p′ ,

since n + (s − n − 1)p′ = − (1−s)p+n
p−1 < 0. Putting together the last three

inequalities, we can see that there exists C̃ = C̃(s, n, p) such that�
B(x,2r)c

∣∣∣∣ x− z
|x− z|n+1−s −

y − z
|y − z|n+1−s

∣∣∣∣ |Ds
δu(z)| dz ≤

C̃r
[n+(s−n−1)p′] 1

p′+1‖Ds
δu‖Lp(Rn) = C̃r

s−n
p ‖Ds

δu‖Lp(Rn).

(6.60)

Then, the conclusion follows combining (6.56), (6.57), (6.58), (6.59) and
(6.60), as well as the inclusion suppDs

δu ⊂ Ω, which implies ‖Ds
δu‖Lp(Rn) =

‖Ds
δu‖Lp(Ω).

Next we show a kind of `nonlocal mean value theorem'. It is similar to
the one based on the fractional gradient, Proposition 3.5.13. This is a key
ingredient in order to show below compactness of embeddings in Lq spaces
through the Fréchet�Kolmogorov theorem.

Proposition 6.4.4. Let M > 0, δ > 0, and 1 ≤ p < ∞. Then there exists
C > 0 such that for all s ∈ (0, 1), h ∈ B(0,M) and u ∈ Hs,p,δ

0 (Ω−δ),�
Ω
|u(x+ h)− u(x)|pdx ≤

(
C|h|s

s(1− s)

)p
‖Ds

δu‖
p
Lp(Ω).
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Proof. By a standard density argument, it is enough to prove the result for
u ∈ C∞c (Ω). Let us �x h ∈ Rn. By Theorem 6.3.6,

|u(x+ h)− u(x)| =
∣∣∣∣�

Rn
(V s
δ (z)− V s

δ (z + h)) ·Ds
δu(x− z)dz

∣∣∣∣
≤
�
Rn
|V s
δ (z)− V s

δ (z + h)| |Ds
δu(x− z)|dz.

(6.61)

Notice that since suppu ⊂ Ω−δ, we have suppDs
δu ⊂ Ω. Thus for every z ∈ Ω

we have that supp(Ds
δu(·+ z)) ⊂ Ω− z ⊂ Ω−Ω. Let us take then R > 0 big

enough such that Ω− Ω ⊂ B(0, R).
By Theorem 6.3.14, there exists C > 0 such that

|V s
δ (z)− V s

δ (z + h)| ≤ C
∣∣∣∣ z

|z|n+1−s −
z + h

|z + h|n+1−s

∣∣∣∣ ,
for all z ∈ B(0, R). Appling Hölder's inequality to the right hand side in
(6.61),

|u(x+ h)− u(x)| ≤ C

(�
B(0,R)

∣∣∣∣ z

|z|n+1−s −
z + h

|z + h|n+1−s

∣∣∣∣ |Ds
δu(x− z)|pdz

) 1
p

(�
B(0,R)

∣∣∣∣ z

|z|n+1−s −
z + h

|z + h|n+1−s

∣∣∣∣ dz
) 1

p′

≤

(
C|h|s

s(1− s)

) 1
p′
(�

B(0,R)

∣∣∣∣ z

|z|n+1−s −
z + h

|z + h|n+1−s

∣∣∣∣ |Ds
δu(x− z)|pdz

) 1
p

where we have used Lemma 3.5.12. Next, we integrate and apply Fubini's
theorem to obtain�

Ω
|u(x+ h)− u(x)|p dx ≤(
C|h|s

s(1− s)

)p/p′ �
B(0,R)

∣∣∣∣ z

|z|n+1−s −
z + h

|z + h|n+1−s

∣∣∣∣ �
Ω
|Ds

δu(x− z)|p dxdz ≤(
C|h|s

s(1− s)

)p/p′+1

‖Ds
δu‖

p
Lp(Rn) =

(
C|h|s

s(1− s)

)p
‖Ds

δu‖
p
Lp(Ω).

Next, we write an analogous of Rellich�Kondrachov theorem for the space
Hs,p,δ

0 (Ω−δ). The compact embedding result is the following.
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Theorem 6.4.5. Set 0 < s < 1, 0 < δ and 1 < p < ∞. Let g ∈ Hs,p,δ(Ω).

Then, for any sequence {uj}j∈N ⊂ Hs,p,δ
g (Ω−δ) such that

uj ⇀ u in Hs,p,δ(Ω),

for some u ∈ Hs,p,δ(Ω), one has u ∈ Hs,p,δ
g (Ω−δ) and

uj → u in Lq(Ω),

for every q satisfying 
q ∈ [1, p∗s) if sp < n,

q ∈ [1,∞) if sp = n,

q ∈ [1,∞] if sp > n.

where p∗s := np
n−sp .

Proof. Clearly, u ∈ Hs,p,δ
g (Ω−δ), since H

s,p,δ
g (Ω−δ) is a closed a�ne subspace

of Hs,p,δ(Ω−δ).
The case sp > n follows from Theorem 6.4.3 and the Ascoli�Arzelà the-

orem. The case sp = n reduces to the case sp < n. Thus, we focus on the
case sp < n. Moreover, the case q < p reduces to the case q ≥ p, so we can
assume that q ∈ [p, p∗s).

There exists M > 0 such that ‖uj‖Hs,p,δ(Ω) < M for each j ∈ N. By
Proposition 3.5.13 we have that for j ∈ N

‖τhuj − uj‖Lp(Ω) ≤
C|h|s

s(1− s)
‖Ds

δuj‖Lp(Ω), (6.62)

with τhuj = uj(· − h). Next, as p ≤ q < p∗, we can write

1

q
=
α

p
+

1− α
p∗

for some α ∈ (0, 1].

Let C > 0 denote a constant whose value may vary through the di�erent steps.
Finally, using the interpolation inequality, (6.62), the triangular inequality
and Theorem 6.4.1,

‖τhuj − uj‖Lq(Ω) ≤ ‖τhuj − uj‖αLp(Ω)‖τhuj − uj‖
1−α
Lp∗(Ω)

≤
(

C|h|s

s(1− s)

)α
‖Ds

δuj‖αLp(Ω)

(
2‖uj‖Lp∗(Ω)

)1−α
≤
(

C|h|s

s(1− s)

)α
‖Ds

δuj‖Lp(Ω) ≤M
(

C|h|s

s(1− s)

)α
.
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Thus,

lim
h→0

sup
j∈N
‖τhuj − uj‖Lq(Ω) = 0.

As a result, the Fréchet�Kolmogorov criterion leads to the compactness of
{uj}j∈N in Lq(Ω), so �nishing the proof.

6.5 Comments on the fractional and nonlocal gra-

dients

In this chapter we have already seen several results that allow us to make
a comparison between the notions of fractional gradient and the nonlocal
one. Thus, we can make some comments and observations here regarding the
advantages and disadvantages of considering one operator or the other. As it
was already mentioned at the introduction of Part II, [102] showed that the
s-fractional gradient is the only fractional derivative up to a multiplicative
constant verifying several natural requirements (invariance under translations
and rotations, homogeneity under dilations and some continuity properties
in an appropriate functional space). As for the nonlocal gradient, it seems
it would be able to verify all of them except one, the homogeneity under
dilations, in favour of being de�ned over bounded domains.

The fractional gradient seems to be the clear academic option when one
wants to extend the concepts of di�erentiability to real exponents between
0 and 1. However, there are some properties that one would initially have
thought to hold, but then it turned out it was not the case. For example, it is
widely known that any (classical) derivative of a function f ∈ S (the Schwartz
space) remains in such space, however it does not hold that Ds(S) ⊂ S.
This assertion can easily be seen in the formula of the Fourier transform
of the fractional gradient, which exhibits some di�erentiability problems at
ξ = 0, preventing it from being a Schwartz function. Actually, the same
issue might be observed in the set of (tempered) distributions, a set that
was conceived as a set where one could derivate (with a natural exponent)
inde�nitely. Sometimes, the fractional gradient of a distribution cannot even
be de�ned (it can for distributions with compact supports or Lp functions
seen as distributions). This issue is not exhibited by the nonlocal gradient
Ds
δ , since D

s
δ(C

∞
c (Rn)) ⊂ C∞c and Ds

δ(S) ⊂ S (see Proposition 6.3.3). Hence,
by duality, the corresponding distributional spaces are also close under this
operation.

Therefore, besides the common properties of both notions, typical charac-
teristics of the fractional gradient include being de�ned over the whole space
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and homogeneity under dilations. It also enjoys a semi-group property and
it is closely linked to Bessel fractional spaces and the fractional laplacian
as we have seen in Chapter 3. According to the formulas shown in Part II
and the clear resemblance to they analogous ones in the local case, the frac-
tional gradient might be seen as the suitable generalization from an academic
approach.

As for the nonlocal gradient, it is de�ned over bounded domains (which is
relevant for applications), and thus, there could be considered more general
nonlocal boundary conditions. Nevertheless, it does not seem to enjoy a semi-
group property. As opposed to the fractional gradient, we have that given
E a space of test functions, in particular E = S or E = C∞c (Rn), then
Ds
δ(E) ⊂ E. By duality, such property is inherited by the corresponding

distributional spaces. Finally, as with the fractional gradient, a nonlocal
laplacian can be de�ned from the nonlocal gradient. This is shown in the
next section.

6.5.1 Nonlocal laplacian

Given the de�nitions of nonlocal gradient and divergence, it is natural to
consider the composition of those two in order to obtain a sort of nonlocal
laplacian. Actually, such issue is addressed in [44] where De�nition 6.1.1
would be a particular case of what they call weighted nonlocal gradient and
divergence. Here we would like to see that the operator obtained with this
particular kernel ρδ (the Riesz potential times a cut-o� function) gives rise
to a notion where several equivalent characterization can be given. This is
something that does not hold with the settled de�nitions for a fractional
laplacian over bounded domain (as opposed to its counterpart over the whole
domain). In fact, for 0 < s < 1, 0 < δ and u ∈ C∞c (Rn), we have that the
following characterizations are equivalent. We recall that the function Qsδ was
de�ned in Lemma 6.3.2.

1) Fourier transform:

∆̂s
δu(ξ) = −4π2|ξ|2Q̂sδ

2
(ξ)û(ξ).

2) Nonlocal divergence of the nonlocal gradient:

∆s
δu(x) = divsδD

s
δu(x).

3) Inverse of a potencial

∆s
δu(x) = (n+ s− 1)2

�
B(x,2δ)

u(y)β(x− y) dy
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where β̂ = ̂(∇Qsδ ∗ ∇Qsδ)

β(x̃) =

�
z

|z|
ρδ(z)

z − x̃
|z − x̃|

ρδ(z − x̃) dz.

We start with the de�nition from 2). Let u ∈ C∞c (Rn), if we take into
account (6.11), (6.14) and (6.15) we have that

∆s
δu(x) = divsδD

s
δu(x) =

n∑
i=1

Ds
δ,i(D

s
δ,iu)(x).

Applying Corollary 6.3.4 twice it yields

∆̂s
δu(ξ) =

n∑
i=1

2πiξi D̂s
δ,iu(ξ) Q̂sδ(ξ) = −

n∑
i=1

4π2ξ2
i ûQ̂

s
δ(ξ)

2 = −4π2|ξ|2Q̂sδ ∗Qsδû,

where Q̂sδ(ξ)
2 = Q̂sδ ∗Qsδ by the Fourier transform of the convolution of two

integrable functions.
Finally, a step forwards in the previous equation (i.e. ∇̂f(ξ) = 2πiξf̂(ξ))

gives us that

∆̂s
δu(ξ) = ̂(∇Qsδ ∗ ∇Qsδ)(ξ)û(ξ),

then, taking inverse Fourier transform and recalling Lemma 6.3.2 so as to
de�ne β, 3 follows.
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Existence of minimizers of

nonlocal energy functionals.

Euler-Lagrange equations

Finally, in a similar way to what was done in Part II, the results collected in
the previous chapter allow us to study the existence of minimizers of nonlocal
functionals. First, we consider the scalar case under hypothesis of convexity.
Then, we proceed with the computation of the Euler-Lagrange equations as
the equilibrium equations of the system. Most part of this chapter is devoted
to the analysis of vector variational problems involving the nonlocal gradient
Ds
δ . Speci�cally, we want to study the existence of minimizers of polyconvex

energy functionals based on Ds
δ (see De�nition 4.0.1 for the notion of poly-

convexity). The corresponding Euler-Lagrange will also be shown. This time,
as opposed to the one addressed in Chapter 4, the energy functional would
be de�ned over bounded domains, making it suitable as a nonlocal model
for hyperelasticity. At the moment, we are going to consider just Dirich-
let (nonlocal) boundary conditions on the tubular neighbourhood Ωδ\Ω−δ,
which, although the radius (2δ) is actually imposed by the embedding the-
orem from the previous chapter, make sense since we would be taking two
nonlocal derivatives of a function in the model. Actually, as happened in the
fractional case, we will have to deal with a nonlocal Piola identity

Divsδ cof Ds
δu = 0

(where Divsδ means the nonlocal divergence by rows). This is a nonlocal
version of that of Theorem 4.1.2 and, as it was appointed at the introduction
of Chapter 4, it might be useful in other contexts. In fact, we refer to the
introduction of such chapter, since the steps followed here so as to obtain
the existence of minimizers are practically the same. We recall that although
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Euler-Lagrange equations

we have shown the symmetry of second (nonlocal) derivatives (Proposition
6.2.6), it is not enough for the proof of a nonlocal Piola identity, since, as
happened in the fractional case, the nonlocal version of the Leibniz formula
gives rise to non symmetric terms, making the proof of such identity more
di�cult. Either way, once we had reached a particular step, we would be able
to refer ourselves directly to the fractional case, so as to conclude the proof
of the nonlocal Piola identity.

7.1 Convex functionals

We start this chapter with we prove the existence of minimizers of functionals
of the form

I(u) =

�
Ω
W (x, u(x), Ds

δu(x)) dx (7.1)

under coercivity and convexity conditions. We also show in the next section
the corresponding Euler�Lagrange equations satis�ed by the minimizers.

The result on the existence of minimizers, which is a standard application
of the direct method of the Calculus of Variations, is as follows.

Theorem 7.1.1. Let Ω be a bounded open subset of Rn. Let p > 1 and
0 < s < 1. Let u0 ∈ Hs,p,δ(Ω). Let W : Ω × R × Rn → R ∪ {∞} satisfy the
following conditions:

a) W is Ln×B×Bn-measurable, where Ln denotes the Lebesgue sigma-algebra
in Rn, whereas B and Bn denote the Borel sigma-algebras in R and Rn,
respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Ω and every y ∈ R, the function W (x, y, ·) is convex.

d) There exist c > 0 and a ∈ L1(Ω) such that

W (x, y, F ) ≥ a(x) + c |F |p

for a.e. x ∈ Ω, all y ∈ R and all F ∈ Rn.

De�ne I as in (7.1), and assume that I is not identically in�nity in Hs,p,δ
u0 (Ω−δ).

Then there exists a minimizer of I in Hs,p,δ
u0 (Ω−δ).

Proof. Assumption d) shows that the functional I is bounded below by
�
a.

As I is not identically in�nity in Hs,p,δ
u0 (Ω−δ), there exists a minimizing se-

quence {uj}j∈N of I in Hs,p,δ
u0 (Ω−δ). Assumption d) implies that {Ds

δuj}j∈N
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is bounded in Lp(Ω,Rn). By Theorem 6.4.1, {uj}j∈N is bounded in Lp(Ω).
Therefore, {uj}j∈N is bounded in Hs,p,δ(Ω). As Hs,p,δ(Ω) is re�exive (Propo-
sition 6.1.4), we can extract a weakly convergent subsequence. Using Theorem
6.4.5, we obtain that there exists u ∈ Hs,p,δ(Ω) such that for a subsequence
(not relabelled),

uj ⇀ u in Hs,p,δ(Ω) and uj → u in Lp(Ω). (7.2)

Moreover, u ∈ Hs,p,δ
u0 (Ω−δ).

A standard lower semicontinuity result for convex functionals (see, e.g.,
[59, Th. 7.5]) shows that

I(u) ≤ lim inf
j→∞

I(uj).

Therefore, u is a minimizer of I in Hs,p,δ
u0 (Ω−δ) and the proof is concluded.

7.2 Euler-Lagrange equations

We show in this section the Euler�Lagrange equation satis�ed by any mini-
mizer.

Theorem 7.2.1. Let Ω be a bounded open subset of Rn. Let p > 1 and
0 < s < 1. Let u0 ∈ Hs,p,δ(Ω). Let W : Ω×R×Rn → R satisfy the following
conditions:

a) W (·, y, F ) is Ln-measurable for each y ∈ R and F ∈ Rn, where Ln denotes
the Lebesgue sigma-algebra in Rn.

b) W (x, ·, ·) is of class C1 for a.e. x ∈ Ω.

c) There exist c > 0, q ∈ [1,∞), a ∈ L1(Ω) and a function f : R→ R sending
bounded sets in bounded sets such that

|W (x, y, F )|+ |DyW (x, y, F )|+ |DFW (x, y, F )| ≤
a(x) + c

(
|y|p

∗
+ |F |p

)
if sp < n,

a(x) + c (|y|q + |F |p) if sp = n,

a(x) + f(y) + c |F |p if sp > n,

for a.e. x ∈ Ω, all y ∈ R and all F ∈ Rn.
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Euler-Lagrange equations

De�ne I as in (4.34). Let u be a minimizer of I in Hs,p,δ
u0 (Ω−δ). Then, for

every ϕ ∈ C∞c (Ω),�
Ω

[DyW (x, u(x), Ds
δu(x))ϕ(x) +DzW (x, u(x), Ds

δu(x)) ·Ds
δϕ(x)] dx = 0.

(7.3)
If, in addition, DzW (·, u(·), Ds

δu(·)) ∈ C1(Ωδ,Rn) then

DyW (x, u(x), Ds
δu(x)) =

divsδDzW (x, u(x), Ds
δu(x)) +

(n+ s− 1)

�
ΩB,δ

DzW (y, u0(y), Ds
δu(y))

|x− y|
· x− y
|x− y|

ρδ(x− y) dy

(7.4)

for a.e. x ∈ Ω−δ.

Proof. Using a standard argument, in order to show (7.3) it is enough to check
that one can di�erentiate under the integral sign in the function t 7→ I(u+tϕ).
Assumption c) shows that this is the case (see, e.g., [74, Ch. 13, �2, Lemma
2.2]). Indeed, in the case sp < n we use Theorem 6.4.1; in the case sp = n we
use Theorem 6.4.1 and the embedding Hs,n

s
,δ(Ω) ⊂ Hs,q,δ(Ω) for all q < n

s .
In the case sp > n we use the embedding provided by Theorem 6.4.3. Thus,
(7.3) is proved.

In order to derive (7.4) from (7.3) we make the abbreviation DzW (x) for
DzW (x, u(x), Ds

δu(x)). We use Theorem 6.1.2 to obtain�
Ω
DzW (x) ·Ds

δϕ(x) dx =

−
�

Ω
ϕ(x) divsδDW (x) dx

−(n+ s− 1)

�
Ω

�
ΩB,δ

ϕ(x)DW (y)

|x− y|
· x− y
|x− y|

ρδ(x− y) dydx.

Then we combine it with (7.3), apply the fundamental lemma of the Calculus
of Variations and (7.4) follows.

7.3 Polyconvex functionals

7.3.1 Nonlocal Piola Identity

In this section we introduce a nonlocal version of the Piola Identity. In the
classical case, the Piola identity can be easily computed thanks to the sym-
metry of the second derivatives (Schwartz Theorem), however, as it was afore-
mentioned, the nonlocal version of the Leibniz rule (derivative of a product)
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does not mimic exactly its local counterpart, which causes the appearance of
non symmetric terms. Therefore, although Proposition 6.2.6 may be enough
to prove the nonlocal Piola identity when n = 2, it is not so for n ≥ 3, when
nonlinearities appear in such computation.

This identity is the main step in order to prove the existence of solutions
to our vectorial nonlocal energy, since it will allow us to prove the weak
continuity inHs,p,δ of the determinant of the nonlocal gradient. We recall that
cof, the cofactor matrix, satis�es cof AAT = (detA) I for every A ∈ Rn×n.

In this section we will extensively employ the following formulas for the
nonlocal gradient and divergence, obtained from De�nition 6.1.1 through odd
symmetry.

Ds
δu = −pvx n

�
B(x,δ)

u(y)

|x− y|
x− y
|x− y|

wδ(|x− y|)
|x− y|n+s−1

dy,

divsδ φ(x) = −pvx n

�
B(x,δ)

φ(y)

|x− y|
· x− y
|x− y|

wδ(|x− y|)
|x− y|n+s−1

dy

(7.5)

for x ∈ Ω, u : Ωδ → R and φ : Ωδ → Rn.
Given the strong similarity with the fractional Piola identity (subsection

4.1) we refer to the introduction of such section as a foretaste of the ideas
and steps involved. Moreover, in this and the next sections we will employ
again the notation for the submatrices shown in De�nition 4.1.1.

The following lemma will be useful in the proof of the nonlocal Piola
identity.

Lemma 7.3.1. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ j1 <
· · · < jk ≤ n and let N = Nj1,...,jk be the function of De�nition 4.1.1. Then
there exists a continuous function G : [0,∞) × (Rn)k−1 → R such that for
any a1, . . . , ak ∈ Rn and b0δ > ε1, . . . , εk > 0 we have∣∣∣∣∣
�

(
⋃k
j=1 B(aj ,εj))

c

det([x− a1]N , . . . , [x− ak]N )

|x− a1|n+s+1 · · · |x− ak|n+s+1
wδ(x− a1) . . . wδ(x− an)dx

∣∣∣∣∣ ≤
ε1−s1

(ε2 · · · εk)n+s+2G(ε1, a2 − a1, . . . , ak − a1),

where b0 is the constant from the de�nition of wδ.

Proof. We can assume that the points a1, . . . , ak do not lie on an a�ne man-
ifold of dimension k− 2, since otherwise det([x− a1]N , . . . , [x− ak]N ) = 0 for
all x ∈ Rn.
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Now, let Qsδ be the function from Lemma 6.3.2, then Qsδ ∈ C∞(Rn\{0})∩
L1(Rn), Qsδ = 0 in B(0, δ)c and

∇Qsδ(x) = −cn,s
x

|x|n+s+1
wδ(x),

and by Lemma 6.3.2 again, there exists z0 ∈ R such that

Qsδ(x) =
a0

γ(1− s)|x|n+s−1
+

z0

γ(1−s)
∀x ∈ B(0, b0δ) (7.6)

where b0 is the constant from the de�nition of wδ. Next de�ne hi : Rn \
{ai} → R as hi(x) = −1

cn,s
Qsδ(x − ai), for each i = 1, . . . , k. De�ne Hδ :

Rn \ {a1, . . . , ak} → Rk componentwise as Hδ = (h1, . . . , hk)
T . Then

DH(x) =

∇h1(x)
...

∇hk(x)

 =


(x−a1)wδ(x−a1)
|x−a1|n+s+1

...
(x−ak)wδ(x−ak)
|x−ak|n+s+1

 . (7.7)

Call ~ = (j1, . . . , jk) and denote by D~Hδ the submatrix of DHδ formed by
the columns j1, . . . , jk. Then, for all x ∈ Rn \ {a1, . . . , ak},

detD~Hδ(x) =
det
(

[x− a1]Nwδ(x− a1), . . . , [x− ak]Nwδ(x− ak)
)

|x− a1|n+s+1 · · · |x− ak|n+s+1
. (7.8)

Let R > 0 be big enough so that
⋃k
j=1 B̄(aj , δ) ⊂ B(0, R), then suppHδ ⊂

B(0, R), as a result
�
(
⋃k
j=1B(aj ,εj))

c
detD~Hδ =

�
B(0,R)\

⋃k
j=1 B(aj ,εj)

detD~Hδ.

As Hδ is smooth outside
⋃k
j=1B(aj , εj), we have that

detD~Hδ = div[h1(cof D~Hδ)1]N̄ ,

where (cof D~Hδ)1 indicates the �rst row of cof D~Hδ, and [·]N̄ = [·]N̄j1,...,jk is
the function from De�nition 4.1.1. By the divergence theorem,
�
B(0,R)\

⋃k
j=1B(aj ,εj)

detD~Hδ = −
�
∂
⋃k
j=1 B(aj ,εj)

[h1(cof D~Hδ)1]N̄ · νj , (7.9)

where νj(x) =
x−aj
εj

in ∂B(aj , εj) for j = 1, . . . , k, and we have used that

h1(x) = 0 in ∂B(0, R) (recall that h1 = 0 in B(0, a1)c ⊃ B(0, R)c).
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Figure 7.1: Sets A1, A2, A3 in R3

We continue as in the proof of Lemma 4.1.1. For each i = 1, . . . , n we set

Ai = ∂

 k⋃
j=1

B(aj , εj)

 ∩ ∂B(ai, εi).

As a consequence of the inclusion ∂
⋃k
j=1B(aj , εj) ⊂

⋃k
j=1 ∂B(aj , εj), we have

that

∂

k⋃
j=1

B(aj , εj) =

k⋃
j=1

Aj .

Moreover, the (n− 1)-dimensional area of Ai ∩ Aj is zero for 1 ≤ i < j ≤ k.
Figure 7.1 illustrates this situation when k = n = 3.

Next, using (4.4) and (7.7), we have that for j = 2, . . . , k and x ∈
∂B(aj , εj),

[h1(cof D~H)1]N̄ · νj(x) =

det
(

[x− aj ]N , [x− a2]Nwδ(x− a2), . . . , [x− ak]Nwδ(x− ak)
)

|x− aj ||x− a2|n+s+1 · · · |x− ak|n+s+1
= 0.

As a result, recalling (7.9) and the inclusion Aj ⊂ ∂B(aj , εj), we have that
for every x ∈ A1,�

(
⋃k
j=1 B(aj ,εj))

c
detD~H dx = −

�
A1

[h1(cof D~H)1]N̄ · ν1 dS. (7.10)

Next, if we denote h̄ = −1
(n+s−1)|x|n+s−1 , h̄1 = h̄(x − a1) and recall (7.6),

we have that for every x ∈ A1 ⊂ ∂B(a1, ε1) with 0 < ε1 < b0δ, h̄1(x) =
− 1

(n+s−1)εn+s−1
1

and

h1(x) = a0h̄1(x)+
z0

γ(1−s)
= a0h̄1(x)− z0

γ(1−s)
(n+s−1)εn+s−1

1 h̄1(x) = z(ε1)h̄1(x)

(7.11)
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with z(ε1) ∈ Cn−1(R) such that z(0) = a0.
Having in mind the expression (7.11), the multilinearity of the determi-

nant and considering (4.4) and (7.7), we have that, for x ∈ A1,

− [h1(cof D~H)1]N̄ · ν1(x) =
z(ε)

n+ s− 1

1

εn+s
1

(cof D~H)1 · [x− a1]N =

1

n+ s− 1

z(ε)

εn+s
1

det([x− a1]N , [x− a2]Nwδ(x− a2), . . . , [x− ak]Nwδ(x− ak))
|x− a2|n+s+1 · · · |x− ak|n+s+1 =

1

n+ s− 1

z(ε)

εn+s
1

det([x− a1]N , [a1 − a2]Nwδ(x− a2), . . . , [a1 − ak]Nwδ(x− ak))
|x− a2|n+s+1 · · · |x− ak|n+s+1 =

1

n+ s− 1

z(ε)

εn+s−1
1

([cof([x− a1]N , Y
δ
a2,...,an(a1, x))]M̄ )1

|x− a2|n+s+1 · · · |x− ak|n+s+1 · ν1(x),

(7.12)

where

Y δ
a2,...,an(a1, x) :=

(
[a1 − a2]Nwδ(x− a2), . . . , [a1 − ak]Nwδ(x− ak)

)
and [·]M̄ = [·]M̄i1,...,ik;j1,...,jk

is the function from De�nition 4.1.1.

Let Πk be the only hyperplane in Rk such that the points [a1]N , . . . , [ak]N
belong to Πk, and consider one of the two unit normals ~n ∈ Rk to Πk. Let
Tk : Rk → Rk be the symmetry with respect to Πk, so that for every y ∈ Rk,

Tky = y − 2(y − [a1]N ) · ~n. (7.13)

Let ~m = [~n]N̄ , and let Π be the a�ne hyperplane in Rn with normal ~m
passing through a1. Consider T : Rn → Rn as the symmetry across Π. Then,
for all x ∈ Rn,

Tx = x− 2(x− a1) · ~m. (7.14)

Let ak+1, . . . , an ∈ Π be such that the points a1, . . . , an do not lie in an a�ne
manifold of dimension n − 2. De�ne A±1 = {x ∈ A1 : ±det(x − a1, a1 −
a2, . . . , a1− an) > 0}. Then T (A±1 ) = A∓1 , and A

+
1 ∪A

−
1 cover A1 up to a set

of zero (n−1)-measure; see Figure 7.2. Using the change of variables formula
(4.3), we obtain

�
A−1

([cof([x− a1]N , Y
δ
a2,...,an(a1, x))]M̄ )1

|x− a2|n+s+1 · · · |x− ak|n+s+1 · ν1(x) dS(x)

=

�
A+

1

([cof([Tx− a1]N , Y
δ
a2,...,an(a1, Tx))]M̄ )1

|Tx− a2|n+s+1 · · · |Tx− ak|n+s+1 · ν1(Tx) dS(x).

(7.15)
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Π

A+
1

A−1

a1

A1
a2
A2

Figure 7.2: Sets A1, A2, A
+
1 , A

−
1 and Π

Now, thanks to (4.4), for x ∈ A+
1 ,

([cof([Tx− a1]N , Y
δ
a2,...,an(a1, Tx))]M̄ )1 · ν1(Tx) =

1

ε1
det([Tx− a1]N , Y

δ
a2,...,an(a1, Tx)).

(7.16)

Let ~Tk : Rk → Rk be the linear map corresponding to the a�ne map Tk, and,
analogously, ~T : Rn → Rn the linear map corresponding to T . We notice that
det ~Tk = −1. Having in mind (7.13) and (7.14), we �nd that

~Tky = y − 2y · ~n, y ∈ Rk

and

~Tx = x− 2x · ~m, x ∈ Rn,

from which we deduce that ~Tk ◦ [·]N = [·]N ◦ ~T . Thus, by the multilinear-
ity of the determinant we can write next equation without the scalar terms
( wδ(Tx−aj)
|Tx−aj |n+s+1 ), j = 2, . . . , k.

det ([Tx− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

= det([Tx− Ta1]N , [Ta1 − Ta2]N , . . . , [Ta1 − Tak]N )

= det([~T (x− a1)]N , [~T (a1 − a2)]N , . . . , [~T (a1 − ak)]N )

= det(~Tk([x− a1]N ), ~Tk([a1 − a2]N ), . . . , ~Tk([a1 − ak]N ))

= det ~Tk([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

= −det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N ).

(7.17)
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Putting together (7.15), (7.16) and (7.17), we obtain that

�
A−1

det([x− a1]N , [a1 − a2]Nwδ(x− a2), . . . , [a1 − ak]Nwδ(x− ak))
|x− a2|n+s+1 · · · |x− ak|n+s+1 dS(x) =

−
�
A+

1

det([x− a1]N , [a1 − a2]Nwδ(Tx− a2), . . . , [a1 − ak]Nwδ(Tx− ak))
|Tx− a2|n+s+1 · · · |Tx− ak|n+s+1 dS(x).

Consequently, when we de�ne f : Rn \ {a2, . . . , ak} → R and g : Rn → R as

f(y) :=
1

(|y − a2| · · · |y − ak|)n+s+1 , g(y) := wδ(y − a2) . . . wδ(y − ak)

and J : Rn \ {a2, . . . , ak} → R as J(y) = f(y)g(y), we have that

�
A1

det([x− a1]N , [a1 − a2]Nwδ(x− a2), . . . , [a1 − ak]Nwδ(x− ak))
|x− a2|n+s+1 · · · |x− ak|n+s+1 dS(x) =

�
A+

1

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N ) [J(x)− J(Tx)] dS(x).

(7.18)

For every x ∈ A+
1 , we join x with Tx by a curve γx inside A1, and note

that the length of γx can be taken to be bounded by 2πε1. Accordingly, let
γx : [0, 1] → A1 be of class C1 such that γx(0) = x, γx(1) = Tx and |γ′x| is
constant with |γ′x| ≤ 2πε1. Then

|J(x)− J(Tx)| = |J(γx(0))− J(γx(1))| ≤
� 1

0
|γ′x| |∇J(γx(t))| dt

≤ 2πε1

� 1

0
|∇J(γx(t))| dt.

(7.19)

By (4.18) in Lemma 4.1.1,

|∇f(y)| = (n+ s+ 1) (|y − a2| · · · |y − ak|)−n−s−2
k∑
i=2

k∏
j=2
j 6=i

|y − aj | ,

for y ∈ Rn \ {a2, . . . , ak}.
Again, by the same computation in Lemma 4.1.1, as |y−aj | > εj for every

216



Section 7.3. Polyconvex functionals

y ∈ A1 and j ∈ {2, . . . , k},

|∇f(y)| ≤ n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

|y − aj |

≤ n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |).

Then, since g is smooth with compact support, we have that there exists
C > 0 such that

|∇J(y)| ≤ |∇f(y)| |g(y)|+ |f(y)| |∇(y)|

≤ C n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |) +
C

(ε2 . . . εk)n+s+1

so with (7.19) we obtain that

|J(x)− J(Tx)| ≤

2πε1C

 n+ s+ 1

(ε2 · · · εk)n+s+2

k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |) +
1

(ε2 . . . εk)n+s+1

 .
(7.20)

On the other hand, for all x ∈ A1,

|det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )| ≤

k! |x− a1|
k∏
j=2

|a1 − aj | = k! ε1

k∏
j=2

|a1 − aj | .
(7.21)

Putting together (7.8), (7.10), (7.12), (7.18), (7.20), (7.21) and the function
z(ε1), as well as the fact that the (n− 1)-dimensional area of A+

1 is bounded
by a constant times εn−1

1 and that 0 < εi < b0δ, i = 1, . . . , n, we obtain that,
for a constant C > 0 depending on n, s and a0,∣∣∣∣∣

�
(
⋃k
j=1B(aj ,εj))

c

det([x− a1]N , [a1 − a2]N , . . . , [a1 − ak]N )

|x− a1|n+s+1 · · · |x− ak|n+s+1
dx

∣∣∣∣∣ ≤
Cz(ε1) ε1−s1

(ε2 · · · εk)n+s+2

 k∏
j=2

|a1 − aj |


 k∑
i=2

k∏
j=2
j 6=i

(ε1 + |a1 − aj |) + (b0δ)
k−1

 .
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Euler-Lagrange equations

The existence of the function G of the statement follows.

We are in a position to prove the nonlocal Piola Identity. Henceforth,
supp denotes the support of a function.

Theorem 7.3.2. Let k ∈ N be with 1 ≤ k ≤ n. Consider indices 1 ≤ i1 <
· · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n and the functions

[·]M = [·]Mi1,...,ik;j1,...,jk
, [·]M̄ = [·]M̄i1,...,ik;j1,...,jk

of De�nition 4.1.1. Let u ∈ C∞c (Rn,Rn) and s ∈ (0, 1). Then

Divsδ([cof[Ds
δu]M ]M̄ ) = 0.

Proof. Let
[·]N = [·]Nj1,...,jk , [·]N̄ = [·]N̄j1,...,jk

be the maps of De�nition 4.1.1. Naturally, Divsδ([cof[Ds
δu]M ]M̄ ) = 0 if and

only if
divsδ[(cof[Ds

δu]M )i` ]N̄ = 0, ` = 1, . . . , k.

We shall show divsδ[(cof[Ds
δu]M )i1 ]N̄ = 0. The rest of the rows would proceed

analogously.
Using (7.5), we have that, for a.e. x ∈ Rn,

(−1)k−1

ckn,s
divsδ[(cof[Ds

δu]M )i1 ]N̄ (x) =

(−1)k−1

ck−1
n,s

pvx

�
B(x,δ)

[(cof[Ds
δu]M )i1 ]N̄ (x′)

|x′ − x|n+s+1
· (x′ − x)wδ(x

′ − x) dx′.

(7.22)

Now, by (4.4) and (7.5), we have that for a.e. x, x′ ∈ Rn,

(−1)k−1

ck−1
n,s

[(cof[Ds
δu]M )i1 ]N̄ (x′)

|x′ − x|n+s+1
· (x′ − x)wδ(x

′ − x)

=
(−1)k−1

ck−1
n,s

(cof[Ds
δu]M )i1(x′)

|x′ − x|n+s+1
· [x′ − x]Nwδ(x

′ − x)

=
(−1)k−1

ck−1
n,s

det ([x′ − x]N , [D
s
δui2(x′)]N , . . . , [D

s
δuik(x′)]N )

|x′ − x|n+s+1
wδ(x

′ − x)

= det

(
[x′ − x]Nwδ(x

′ − x)

|x′ − x|n+s+1
, pvx′

�
ui2(y2)[x′ − y2]N
|x′ − y2|n+s+1

wδ(x
′ − y2) dy2, . . . ,

pvx′

�
uik(yk)[x

′ − yk]N
|x′ − yk|n+s+1

wδ(x
′ − yk) dyk

)
= lim

ε2→0
· · · lim

εk→0
fxε2,...,εk(x′),

(7.23)
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where for each x ∈ Rn and ε2, . . . , εk > 0, we have de�ned fxε2,...,εk : Rn → R
by

fxε2,...,εk(x′) :=

det

(
[x′ − x]Nwδ(x

′ − x)

|x′ − x|n+s+1
,

�
B(x′,ε2)c

ui2(y2)[x′ − y2]N
|x′ − y2|n+s+1

wδ(x
′ − y2) dy2, . . . ,

�
B(x′,εk)c

uik(yk)[x
′ − yk]N

|x′ − yk|n+s+1
wδ(x

′ − yk) dyk

)

and we have used the continuity of the determinant. From now on, for the
sake of clarity, since the compact support of the domain of most integrands is
actually determined by that of wδ we will avoid writing it in the integration
domain and we will write

�
g =

�
Rn g.

By odd symmetry, we have that

�
B(x′,εj)c

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

wδ(x
′ − y`)dy` =

�
B(x′,δ)\B(x′,εj)

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

wδ(x
′ − y`)dy` =

�
B(x′,δ)\B(x′,εj)

(
ui`(y`)− ui`(x

′)
) [x′ − y`]N
|x′ − y`|n+s+1

wδ(x
′ − y`)dy`,

so, using the fact that u is Lipschitz and that wδ is bounded by C0, we have,
for some constant L > 0, that∣∣∣∣∣

�
B(x′,εj)c

ui`(y`)
[x′ − y`]N
|x′ − y`|n+s+1

wδ(x− y`)dy`

∣∣∣∣∣ ≤�
B(x′,δ)

C0 |ui`(y`)− ui`(x′)|
|x′ − y`|n+s

dy` ≤

C0L

�
B(x′,δ)

1

|x′ − y`|n+s−1
dy` = C0L

�
B(0,δ)

1

|y|n+s−1
dy <∞.

This shows that ∣∣fxε2,...,εk(x′)
∣∣ ≤ c

|x′ − x|n+s

for some c > 0 only depending on u and n. As
�
B(x,ε1)c

1

|x′ − x|n+s
dx′ <∞,
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Euler-Lagrange equations

for any ε1 > 0, we can apply dominated convergence to conclude that
�
B(x,ε1)c

lim
ε2→0

· · · lim
εk→0

fxε2,...,εk(x′) dx′ = lim
ε2→0

· · · lim
εk→0

�
B(x,ε1)c

fxε2,...,εk(x′) dx′.

Recalling (7.22) and (7.23), with this we obtain that

(−1)k−1

ckn,s
divsδ[(cof[Ds

δu]M )i1 ]N̄ (x) = lim
ε1→0

lim
ε2→0

· · · lim
εk→0

�
B(x,ε1)c

fxε2,...,εk(x′) dx′.

(7.24)
Now for every ε1, . . . , εk > 0 we de�ne Dε1,...,εk := B(x, ε1) ∪

⋃k
j=2B(yj , εj)

and have that, denoting ỹ = y2, . . . , yk, dỹ = dy2, . . . , dyk and

W δ
ỹ (x′, x) = wδ(x

′ − x)wδ(x
′ − y2) . . . wδ(x

′ − yk),

thanks to the multilinearity of the determinant,
�
B(x,ε1)c

fxε2,...,εk(x′) dx′

=

�
B(x,ε1)c

�
B(x′,ε2)c

· · ·
�
B(x′,εk)c(

det ([x′ − x]N , ui2(y2)[x′ − y2]N , . . . , uik(yk)[x
′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
W δ
ỹ (x′, x)

)
dỹ dx′

=

�
uik(yk) · · ·

�
ui2(y2)

�
Dcε1,...,εk(

det ([x′ − x]N , [x
′ − y2]N , . . . , [x

′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
W δ
ỹ (x′, x)

)
dx′ dỹ,

Set

g(x, x′, y2, . . . , yk) :=

det ([x′ − x]N , [x
′ − y2]N , . . . , [x

′ − yk]N )

|x′ − x|n+s+1|x′ − y2|n+s+1 · · · |x′ − yk|n+s+1
W δ
ỹ (x′, x).

Then,∣∣∣∣∣
�
B(x,ε1)c

fxε2,...,εk(x′) dx′

∣∣∣∣∣ ≤
‖u‖k−1

∞

�
suppu

· · ·
�

suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk.
(7.25)
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Thanks to Lemma 7.3.1,∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ ≤
ε1−sk

(ε1 · · · εk−1)n+s+2G(εk, x− yk, y2 − yk, . . . , yk−1 − yk),

(7.26)

where G is the function that appears therein. Integrating in (7.26), we �nd
that �

suppu
· · ·

�
suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk ≤

h(εk, x)
ε1−sk

(ε1 · · · εk−1)n+s+2 ,

for some continuous functions h : [0,∞)× Rn → [0,∞) Consequently,

lim
εk→0

�
suppu

· · ·
�

suppu

∣∣∣∣∣
�
Dcε1,...,εk

g(x, x′, y2, . . . , yk) dx
′

∣∣∣∣∣ dy2 · · · dyk = 0,

and, in view of (7.24) and (7.25), we obtain that divsδ[(cof[Ds
δu]M )i1 ]N̄ (x) =

0.

7.3.2 Weak continuity of detDs
δu

In this section we prove that any minor (determinant of a submatrix) of
Ds
δu is a weakly continuous mapping in Hs,p,δ

0 (Ωδ). We start by expressing a
nonlocal integration by parts formula for the minors of Ds

δu that involves the

operator Ks,δ
ϕ of Lemma 6.2.2. Recall that for any F ∈ Rn×n and 1 ≤ i ≤ n

we denote by Fi the i-th row of F .

Lemma 7.3.3. Consider indices 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · <
jk ≤ n and the functions

[·]M = [·]Mi1,...,ik;j1,...,jk
, [·]M̄ = [·]M̄i1,...,ik;j1,...,jk

, [·]Ñ = [·]Ñi1,...,ik
of De�nition 4.1.1. Let p ≥ k − 1, q ≥ p

p−1 , 0 < δ and 0 < s < 1. Let u ∈
Hs,p,δ

0 (Ω−δ,Rn) be such that cof[Ds
δu]M ∈ Lq(Ω,Rk×k). Then, det[Ds

δu]M ∈
L1(Ω), and for every ϕ ∈ C∞c (Ω) we have that [u]Ñ ·K

s,δ
ϕ ([cof[Ds

δu]M ]M̄ ) ∈
L1(Ω) and�

Ω
det[Ds

δu]M (x)ϕ(x) dx = −1

k

�
Ω

[u]Ñ (x) ·Ks,δ
ϕ ([cof[Ds

δu]M ]M̄ )(x) dx

(7.27)
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Proof. The fact det[Ds
δu]M ∈ L1(Ω) is a consequence of formula (4.4) and

Hölder's inequality, since q ≥ p
p−1 . Moreover, [u]Ñ · K

s,δ
ϕ ([cof[Ds

δu]M )]M̄ ) ∈
L1(Ω), since [u]Ñ ∈ L

p(Ωδ,Rn) and

Ks,δ
ϕ ([cof[Ds

δu]M )]M̄ ) ∈ Lr(Ω,Rn)

for all r ∈ [1, q] thanks to Lemma 6.2.2 .
Assume �rst u ∈ C∞c (Ω−δ,Rn) and let ψ ∈ C∞c (Ω−δ). Fix x ∈ Rn and

i ∈ {i1, . . . , ik}. Applying Lemma 6.2.5 and Theorem 7.3.2 to each row of
[cof[Ds

δu]M ]M̄ ,

divsδ (ψ ([cof[Ds
δu]M ]M̄ )i) (x) = Ks,δ

ψ

(
([cof[Ds

δu]M ]M̄ )Ti

)
(x).

When we apply Theorem 6.1.2 to the constant function 1, we obtain from
integration of the previous formula that

0 =

�
Ω

divsδ (ψ ([cof[Ds
δu]M ]M̄ )i) (x) dx+

�
Ω
ψ(x)[cof[Ds

δu]M ]M̄ (x) ·
�

ΩB,δ

x− y
|x− y|n+s+1

wδ(x− y))dydx

=

�
Ω
Ks,δ
ψ

(
([cof[Ds

δu]M ]M̄ )Ti

)
(x) dx+

�
Ω
ψ(x)[cof[Ds

δu]M ]M̄ (x) ·
�

ΩB,δ

x− y
|x− y|n+s+1

wδ(x− y))dydx.

(7.28)

By the de�nition of Ks,δ
ψ (Lemma 6.2.2),

�
Ω
Ks,δ
ψ

(
([cof[Ds

δu]M ]M̄ )Ti

)
(x) dx =

cn,s

�
Ω

�
Ωδ

ψ(x)− ψ(y)

|x− y|n+s
(cof[[Ds

δu]M ]M̄ )Ti (y)
y − x
|y − x|

wδ(x− y) dydx

and that of the nonlocal gradient (De�nition 6.1.1),

�
Ω
Ds
δψ(y) · ([cof[Ds

δu]M ]M̄ )i (y) dy =

cn,s

�
Ω

�
Ωδ

ψ(y)− ψ(x)

|y − x|n+s
(cof[[Ds

δu]M ]M̄ )Ti (y)
y − x
|y − x|

wδ(x− y) dxdy.
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If we add now the remaining terms, we obtain an equality relating both
integrals. Recalling the compact supports of ψ and wδ, by Fubini's theorem
we have

�
Ω
Ks,δ
ψ

(
([cof[Ds

δu]M ]M̄ )Ti

)
(x) dx =

�
Ds
δψ(y) · ([cof[Ds

δu]M )]M̄ )i (y) dy−

cn,s

�
Ω

�
ΩB,δ

ψ(y)− ψ(x)

|y − x|n+s
(cof[[Ds

δu]M ]M̄ )Ti (y)
y − x
|y − x|

wδ(x− y) dxdy+

cn,s

�
Ω

�
ΩB,δ

ψ(x)− ψ(y)

|x− y|n+s
(cof[[Ds

δu]M ]M̄ )Ti (y)
y − x
|y − x|

wδ(x− y) dydx.

Since suppDs
δu ⊂ Ω and so is suppψ,

�
Ω
Ks,δ
ψ

(
([cof[Ds

δu]M ]M̄ )Ti

)
(x) dx =

�
Ds
δψ(y) · ([cof[Ds

δu]M )]M̄ )i (y) dy−

cn,s

�
Ω
ψ(y)(cof[[Ds

δu]M ]M̄ )i(y) ·
�

ΩB,δ

1

|y − x|n+s

y − x
|y − x|

wδ(x− y) dxdy

Thus, combining this with (7.28) we have the equality
�

Ω
Ds
δψ(y) · ([cof[Ds

δu]M )]M̄ )i (y) dy = 0. (7.29)

Now we assume that u ∈ Hs,p,δ
0 (Ω−δ,Rn) with cof[Ds

δu]M ∈ Lq(Ω,Rk×k), and,
again ψ ∈ C∞c (Ω). By de�nition of Hs,p,δ

0 (Ω−δ), let {uj}j∈N be a sequence
in C∞c (Ω−δ,Rn) converging to u in Hs,p,δ(Ω,Rn). Then [Ds

δuj ]M → [Ds
δu]M

in Lp(Ω,Rk×k) and, hence, cof[Ds
δuj ]M → cof[Ds

δu]M in L
p
k−1 (Ω,Rk×k), so

[cof[Ds
δuj ]M ]M̄ → [cof[Ds

δu]M ]M̄ in L
p
k−1 (Ω,Rn×n). Therefore, (7.29) holds

as well, since Ds
δψ ∈ Lr(Ω) for all r ∈ [1,∞] (see Lemma 6.2.1). Now let

ψ ∈ Hs,p,δ
0 (Ω−δ), and let {ψj}j∈N be a sequence in C∞c (Ω−δ) converging

to ψ in Hs,p,δ(Ω). Then, Ds
δψj → Ds

δψ in Lr(Ω) for all r ∈ [1, p]. As
[cof[Ds

δu]M ]M̄ ∈ Lq(Ω,Rn×n), we have that (7.29) holds as well. To sum up,

formula (7.29) is valid for any u ∈ Hs,p,δ
0 (Ω−δ) with cof[Ds

δu]M ∈ Lq(Ω,Rk×k)
and any ψ ∈ Hs,p,δ

0 (Ω−δ).
We apply (7.29) to ψ = ϕui, which is in Hs,p,δ

0 (Ω−δ) thanks to Lemma
6.2.3, and has compact support. By the formula for Ds

δψ given by Lemma
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6.2.3, we obtain that

0 =

�
Ω
ϕ(y)Ds

δui(y) · ([cof[Ds
δu]M )]M̄ )i (y) dy+

�
Ω
Ks,δ
ϕ (uiI)(y) · ([cof[Ds

δu]M )]M̄ )i (y) dy.

(7.30)

Using formula (4.4), the fact i ∈ {i1, . . . , ik} and elementary properties of the
functions of De�nition 4.1.1, we �nd that for any F ∈ Rn×n,

Fi · ([cof[F ]M ]M̄ )i = det[F ]M .

Since suppui ⊂ Ω−δ, the integral de�ning Ks,δ
ϕ (uiI) has Ω as integration

domain. Then, using this and Fubini's theorem, from (4.28) we arrive at

0 =

�
Ω
ϕ(y) det[Ds

δu]M (y) dy +

cn,s

�
Ω
ui(x)

�
Ω

ϕ(x)− ϕ(y)

|x− y|n+s
([cof[Ds

δu]M )]M̄ )i (y) · x− y
|x− y|

dy dx.

We sum this equality for i = i1, . . . , ik and obtain that

0 =k

�
Ω
ϕ(y) det[Ds

δu]M (y) dy +

cn,s

�
Ω

[u]Ñ (x) ·
�

Ω

ϕ(x)− ϕ(y)

|x− y|n+s
([cof[Ds

δu]M )]M̄ ) (y)
x− y
|x− y|

dy dx,

which, recalling again that supp[cof[Ds
δu]M )]M̄ ⊂ Ω, is the required formula.

Now we establish the closedness and continuity properties of the minors
of Ds

δu in the weak topology of Hs,p,δ. In the notation of De�nition 4.1.1 a),
a minor of order k is a function µ : Rn×n → R such that there exist 1 ≤
i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n for which µ(F ) = det[F ]M for
all F ∈ Rn×n. Recall the notation p∗s of Theorem 6.4.5, and the a�ne space
Hs,p
g .

Theorem 7.3.4. Let p ≥ n − 1 and 0 < s < 1. Let g ∈ Hs,p,δ(Ω) and

u ∈ Hs,p,δ
g (Ω−δ,Rn). Let {uj}j∈N be a sequence in Hs,p,δ

g (Ω−δ,Rn) such that
uj ⇀ u in Hs,p,δ(Ω,Rn). Then

a) If k ∈ N with 1 ≤ k ≤ n− 2 and µ is a minor of order k then µ(Ds
δuj) ⇀

µ(Ds
δu) in L

p
k (Ω) as j →∞.
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b) If cof Ds
δuj ⇀ ϑ in Lq(Ω,Rn×n) for some q ∈ [1,∞) and ϑ ∈ Lq(Ω,Rn×n)

then ϑ = cof Ds
δu.

c) Assume detDs
δuj ⇀ θ in L`(Rn) for some ` ∈ [1,∞) and some θ ∈ L`(Rn).

If sp < n assume, in addition, that cof Ds
δuj ⇀ cof Ds

δu in Lq(Rn,Rn×n)

for some q ∈ ( p∗

p∗−1 ,∞). Then θ = detDs
δu.

Proof. Without loss of generality we assume g = 0, therefore, we can take
u ∈ Hs,p,δ

0 (Ω−δ).
We will prove a) by induction on k. For k = 1 the result is trivial.

Assume it holds for some k ≤ n − 3 and let us prove it for k + 1. Let µ
be a minor of order k + 1. In the notation of De�nition 4.1.1 a), µ(F ) =
det[F ]M for all F ∈ Rn×n, where [·]M = [·]Mi1,...,ik+1;j1,...,jk+1

for some 1 ≤
i1 < · · · < ik+1 ≤ n and 1 ≤ j1 < · · · < jk+1 ≤ n. Let ϕ ∈ C∞c (Ω). By
induction assumption, cof[Ds

δuj ]M ⇀ cof[Ds
δu]M in L

p
k (Ω,R(k+1)×(k+1)) as

j → ∞, so [cof[Ds
δuj ]M ]M̄ ⇀ [cof[Ds

δu]M )]M̄ in L
p
k (Ω,Rn×n). By Lemma

6.2.2 , Ks,δ
ϕ ([cof[Ds

δuj ]M ]M̄ ) ⇀ Ks,δ
ϕ ([cof[Ds

δu]M )]M̄ ) in Lr(Ω,Rn) for every
r ∈ [1, pk ]. By Theorem 6.4.5, [uj ]Ñ → [u]Ñ in Lp(Ω), so

[uj ]Ñ ·K
s,δ
ϕ ([cof[Ds

δuj ]M ]M̄ ) ⇀ [u]Ñ ·K
s,δ
ϕ ([cof[Ds

δu]M )]M̄ ) in L1(Ω) (7.31)

since k
p + 1

p ≤ 1. We apply Lemma 7.3.3 and, in particular, formula (7.27) to
conclude that

�
Ω

det[Ds
δuj(x)]M ϕ(x) dx→

�
Ω

det[Ds
δu(x)]M ϕ(x) dx. (7.32)

This shows that det[Ds
δuj ]M ⇀ det[Ds

δu]M in the sense of distributions.

As {det[Ds
δuj ]M}j∈N is bounded in L

p
k+1 (Ω) and p > k + 1, we have that

det[Ds
δuj ]M ⇀ det[Ds

δu]M in L
p
k+1 (Ω).

The proof of b) follows the lines of a). Let µ be a minor of order n − 1.
In the notation of De�nition 4.1.1 a), µ(F ) = det[F ]M for all F ∈ Rn×n,
where [·]M = [·]Mi1,...,in−1;j1,...,jn−1

for some 1 ≤ i1 < · · · < in−1 ≤ n and
1 ≤ j1 < · · · < jn−1 ≤ n. Let ϕ ∈ C∞c (Ω). By part a), cof[Ds

δuj ]M ⇀

cof[Ds
δu]M in L

p
n−2 (Ω,R(n−1)×(n−1)), so [cof[Ds

δuj ]M ]M̄ ⇀ [cof[Ds
δu]M )]M̄ in

L
p

n−2 (Ω,Rn×n). We have that Ks,δ
ϕ ([cof[Ds

δuj ]M ]M̄ ) ⇀ Ks,δ
ϕ ([cof[Ds

δu]M )]M̄ )
in Lr(Ω,Rn) for every r ∈ [1, p

n−2 ], by Lemma 6.2.2. By Theorem 6.4.5,
[uj ]Ñ → [u]Ñ in Lp(Ω), so convergence (7.31) is also valid since n−2

p + 1
p ≤ 1.

Thanks to (7.27), we conclude that convergence (7.32) holds. This shows
that µ(Ds

δuj) ⇀ µ(Ds
δu) in the sense of distributions. As this is true for
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every minor µ of order n−1, we obtain that cof Ds
δuj ⇀ cof Ds

δu in the sense
of distributions. Thanks to the assumption, ϑ = cof Ds

δu.
We �nally show part c). Let ϕ ∈ C∞c (Ω). Assume �rst sp < n. By the

assumption and Lemma 6.2.2 , Ks,δ
ϕ (cof Ds

δuj) ⇀ Ks,δ
ϕ (cof Ds

δu) in Lr(Ω,Rn)
for every r ∈ [1, q]. By Theorem 6.4.5, uj → u in Lt(Ω) for every t ∈ [1, p∗),
so

uj ·Ks,δ
ϕ (cof Ds

δuj) ⇀ uj ·Ks,δ
ϕ (cof Ds

δu) in L1(Ω) (7.33)

since 1
q + 1

p∗s
< 1.

Assume now sp ≥ n. Then {cof Ds
δuj}j∈N is bounded in L

p
n−1 (Ω,Rn×n)

so, thanks to part b), cof Ds
δuj ⇀ cof Ds

δu in L
p

n−1 (Ω,Rn×n). By Lemma

6.2.2 , Ks,δ
ϕ (cof Ds

δuj) ⇀ Ks,δ
ϕ (cof Ds

δu) in Lr(Ω,Rn) for every r ∈ [1, p
n−1 ].

By Theorem 6.4.5, uj → u in Lt(Ω) for every t ∈ [1,∞), so convergence (4.31)
holds since p > n− 1.

In either case, we have convergence (7.33), so by (7.27) we obtain
�

Ω
detDs

δuj(x)ϕ(x) dx→
�

Ω
detDs

δu(x)ϕ(x) dx.

This shows that detDs
δuj ⇀ detDs

δu in the sense of distributions, so θ =
detDs

δu.

7.3.3 Existence of minimizers

In this section we prove the existence of minimizers in Hs,p,δ of functionals
of the form

I(u) :=

�
Ω
W (x, u(x), Ds

δu(x)) dx. (7.34)

under natural coercivity and polyconvexity (De�nition 4.0.1) assumptions. +
The existence theorem of this chapter is as follows. Its proof relies on a

standard argument in the calculus of variations, once we have the continuity
(with respect to the weak convergence) of the minors given by Theorem 7.3.4.

Theorem 7.3.5. Let p ≥ n − 1 satisfy p > 1, δ > 0 and 0 < s < 1. Let
W : Rn × Rn × Rn×n → R ∪ {∞} satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable, where Ln denotes the Lebesgue sigma-
algebra in Rn, whereas Bn and Bn×n denote the Borel sigma-algebras in
Rn and Rn×n, respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Rn.

c) For a.e. x ∈ Rn and every y ∈ Rn, the function W (x, y, ·) is polyconvex.
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d) There exist a constant c > 0, an a ∈ L1(Rn) and a Borel function h :
[0,∞)→ [0,∞) such that

lim
t→∞

h(t)

t
=∞

and, for some q > p∗s
p∗s−1 if sp < n,{

W (x, y, F ) ≥ a(x) + c |F |p + c |cof F |q + h(|detF |), if sp < n,

W (x, y, F ) ≥ a(x) + c |F |p , if sp ≥ n,

for a.e. x ∈ Rn, all y ∈ Rn and all F ∈ Rn×n.

Let Ω be a bounded open subset of Rn. Let u0 ∈ Hs,p,δ(Ω,Rn). De�ne I as in

(7.34), and assume that I is not identically in�nity in Hs,p,δ
u0 (Ω−δ,Rn). Then

there exists a minimizer of I in Hs,p,δ
u0 (,Ω−δRn).

Proof. Assumption d) shows that the functional I is bounded below by
�
a.

As I is not identically in�nity in Hs,p,δ
u0 (Ω−δ,Rn), there exists a minimiz-

ing sequence {uj}j∈N of I in Hs,p,δ
u0 (Ω−δ,Rn). Assumption d) implies that

{Ds
δuj}j∈N is bounded in Lp(Ω,Rn×n). We claim that {uj}j∈N is bounded

in Lp(Ω−δ,Rn×n). Indeed, in the case sp < n we use Theorem 6.4.1; in the
case sp = n we use Theorem 6.4.1 and the embedding Hs,n

s
,δ(Ω) ⊂ Hs,q,δ(Ω)

for all q < n
s . Finally, in the case sp > n we use the embedding provided by

Theorem 6.4.3. Thus, {uj}j∈N is bounded in Lp(Ω−δ,Rn×n). As uj = u0 in
Ωδ\Ω−δ for all j ∈ N, we also have that {uj}j∈N is bounded in Lp(Ωδ,Rn),
and, consequently, also in Hs,p,δ(Ω,Rn). As Hs,p,δ(Ω,Rn) is re�exive, we
can extract a weakly convergent subsequence. Using Theorem 6.4.5, we ob-
tain that there exists u ∈ Hs,p,δ

u0 (Ω−δ,Rn) such that for a subsequence (not
relabelled),

uj ⇀ u in Hs,p,δ(Ω,Rn) and uj → u in Lp(Ω,Rn). (7.35)

Now, by Theorem 7.3.4, for any minor µ of order k ≤ n− 2, we have that

µ(Ds
δuj) ⇀ µ(Ds

δu) in L
p
k (Ω). (7.36)

If sp < n then, by assumption d), {cof Ds
δuj}j∈N is bounded in Lq(Ω,Rn×n),

whereas if sp ≥ n we call q := p
n−1 and have that {cof Ds

δuj}j∈N is bounded
in Lq(Ω,Rn×n). In either case we have that q > 1, so for a subsequence
{cof Ds

δuj}j∈N converges weakly in Lq(Ω,Rn×n) and, by Theorem 7.3.4,

cof Ds
δuj ⇀ cof Ds

δu in Lq(Ω,Rn×n). (7.37)
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If sp < n then, by assumption d) and de la Vallée Poussin's criterion,
{detDs

δuj}j∈N is equiintegrable, whereas if sp ≥ n we have that {detDs
δuj}j∈N

is bounded in L
p
n (Ω) and p

n > 1. In either case we have that, for a subsequence
{detDs

δuj}j∈N converges weakly in L`(Ω) with{
` = 1 if sp < n,

` = p
n if sp ≥ n,

and, hence, by Theorem 7.3.4,

detDs
δuj ⇀ detDs

δu in L`(Ω). (7.38)

Convergences (7.35)�(7.38) imply, thanks to a standard lower semicon-
tinuity result for polyconvex functionals (see, e.g., [15, Th. 5.4] or [59, Th.
7.5]), that for any R > 0,

�
Ω
W (x, u(x), Ds

δu(x)) dx ≤ lim inf
j→∞

�
Ω
W (x, uj(x), Ds

δuj(x)) dx.

Therefore,
I(u) ≤ lim inf

j→∞
I(uj).

Hence, u is a minimizer of I inHs,p,δ
u0 (Ω−δ,Rn) and the proof is concluded.

Notice that the same comments after the existence (of minimizer) theo-
rem in Section 4.3 regarding the examples from Section 3.6 are also valid in
this case. In other words, this theorem determining the existence of minimiz-
ers of a nonlocal hyperelastic energy is compatible with functions exhibiting
singularities of fracture and cavitation type.
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